NDK OpenGL ES 3.0 开发(十三):实例化(Instancing)

简介: OpenGL ES 实例化(Instancing)是一种只调用一次渲染函数就能绘制出很多物体的技术,可以实现将数据一次性发送给 GPU ,告诉 OpenGL ES 使用一个绘制函数,将这些数据绘制成多个物体。
+关注继续查看

作者:字节流动
来源:https://blog.csdn.net/Kennethdroid/article/details/102770813

OpenGL ES 实例化(Instancing)

20191027201152225.gif
OpenGL ES 实例化(Instancing)是一种只调用一次渲染函数就能绘制出很多物体的技术,可以实现将数据一次性发送给 GPU ,告诉 OpenGL ES 使用一个绘制函数,将这些数据绘制成多个物体。

实例化(Instancing)避免了 CPU 多次向 GPU 下达渲染命令(避免多次调用 glDrawArrays 或 glDrawElements 等绘制函数),节省了绘制多个物体时 CPU 与 GPU 之间的通信时间,提升了渲染性能。

使用实例化渲染需要使用的绘制接口:

//普通渲染
glDrawArrays (GLenum mode, GLint first, GLsizei count);

glDrawElements (GLenum mode, GLsizei count, GLenum type, const void *indices);

//实例化渲染
glDrawArraysInstanced (GLenum mode, GLint first, GLsizei count, GLsizei instancecount);

glDrawElementsInstanced (GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei instancecount);

相对于普通绘制,实例化绘制多了一个参数 instancecount,表示需要渲染的实例数量,调用完实例化绘制函数后,我们便将绘制数据一次性发送给 GPU,然后告诉它该如何使用一个函数来绘制这些实例。

实例化(Instancing)的目标并不是实现将同一物体绘制多次,而是能基于某一物体绘制出位置、大小、形状或者颜色不同的多个物体。OpenGL ES 着色器中有一个与实例化绘制相关的内建变量 gl_InstanceID

gl_InstanceID 表示当前正在绘制实例的 ID ,每个实例对应一个唯一的 ID ,通过这个 ID 可以轻易实现基于一个物体而绘制出位置、大小、形状或者颜色不同的多个物体(实例)。

利用内建变量 gl_InstanceID 在 3D 空间绘制多个位于不同位置的立方体,利用 u_offsets[gl_InstanceID] 对当前实例的位置进行偏移,对应的着色器脚本:

// vertex shader GLSL
#version 300 es                            
layout(location = 0) in vec4 a_position;   
layout(location = 1) in vec2 a_texCoord;   
out vec2 v_texCoord;                       
uniform mat4 u_MVPMatrix;   
uniform vec3 u_offsets[125];               
void main()                                
{
   //通过 u_offsets[gl_InstanceID] 对当前实例的位置进行偏移                                          
   gl_Position = u_MVPMatrix * (a_position + vec4(u_offsets[gl_InstanceID], 1.0));
   v_texCoord = a_texCoord;                
}   

// fragment shader GLSL
#version 300 es
precision mediump float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_TextureMap;
void main()
{
    outColor = texture(s_TextureMap, v_texCoord);
}                                     

在 3D 空间中产生 125 个偏移量(offset):

glm::vec3 translations[125];
int index = 0;
GLfloat offset = 0.2f;
for(GLint y = -10; y < 10; y += 4)
{
    for(GLint x = -10; x < 10; x += 4)
    {
        for(GLint z = -10; z < 10; z += 4)
        {
            glm::vec3 translation;
            translation.x = (GLfloat)x / 10.0f + offset;
            translation.y = (GLfloat)y / 10.0f + offset;
            translation.z = (GLfloat)z / 10.0f + offset;
            translations[index++] = translation;
        }
    }
}
glm::vec3 translations[125];
int index = 0;
GLfloat offset = 0.2f;
for(GLint y = -10; y < 10; y += 4)
{
    for(GLint x = -10; x < 10; x += 4)
    {
        for(GLint z = -10; z < 10; z += 4)
        {
            glm::vec3 translation;
            translation.x = (GLfloat)x / 10.0f + offset;
            translation.y = (GLfloat)y / 10.0f + offset;
            translation.z = (GLfloat)z / 10.0f + offset;
            translations[index++] = translation;
        }
    }
}

对偏移量数组进行赋值,然后进行实例化绘制,绘制出 125 个不同位置的立方体:

glUseProgram(m_ProgramObj);
glBindVertexArray(m_VaoId);

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_TextureId);
glUniform1i(m_SamplerLoc, 0);

for(GLuint i = 0; i < 125; i++)
{
    stringstream ss;
    string index;
    ss << i;
    index = ss.str();
    GLint location = glGetUniformLocation(m_ProgramObj, ("u_offsets[" + index + "]").c_str())
    glUniform2f(location, translations[i].x, translations[i].y, translations[i].z);
}
glDrawArraysInstanced(GL_TRIANGLES, 0, 36, 125);
glBindVertexArray(0);

效果图:
image.png

利用内建变量 gl_InstanceID 和偏移数组进行实例化绘制还存在一个问题,那就是着色器中 uniform 类型数据存在上限,也就是 u_offsets 这个数组的大小有限制,最终导致我们绘制的实例存在上限。

为了避免这个问题,我们可以使用实例化数组(Instanced Array),它使用顶点属性来定义,这样就允许我们使用更多的数据,而且仅当顶点着色器渲染一个新实例时它才会被更新。

这个时候我们需要用到函数 glVertexAttribDivisor ,它表示 OpenGL ES 什么时候去更新顶点属性的内容到下个元素。

void glVertexAttribDivisor (GLuint index, GLuint divisor);
// index 表示顶点属性的索引
// divisor 表示每 divisor 个实例更新下顶点属性到下个元素,默认为 0

利用顶点属性来定义的实例化数组(Instanced Array) 在 3D 空间绘制多个位于不同位置的立方体,对应的着色器脚本:

// vertex shader GLSL
#version 300 es                            
layout(location = 0) in vec4 a_position;   
layout(location = 1) in vec2 a_texCoord;  
layout(location = 2) in vec2 a_offset;
out vec2 v_texCoord;                       
uniform mat4 u_MVPMatrix;   
void main()                                
{
   gl_Position = u_MVPMatrix * (a_position + vec4(a_offset, 1.0));
   v_texCoord = a_texCoord;                
}   

// fragment shader GLSL
#version 300 es
precision mediump float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_TextureMap;
void main()
{
    outColor = texture(s_TextureMap, v_texCoord);
}

设置 VAO 和 VBO :

// Generate VBO Ids and load the VBOs with data
glGenBuffers(2, m_VboIds);
glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3) * 125, &translations[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

// Generate VAO Id
glGenVertexArrays(1, &m_VaoId);

glBindVertexArray(m_VaoId);
glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[0]);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (const void *) 0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (const void *) (3* sizeof(GLfloat)));
glEnableVertexAttribArray(2);

//利用顶点属性来定义的实例化数组(Instanced Array)
glBindBuffer(GL_ARRAY_BUFFER, m_VboIds[1]);
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
//指定 index=2 的属性为实例化数组,1 表示每绘制一个实例,更新一次数组中的元素
glVertexAttribDivisor(2, 1); // Tell OpenGL this is an instanced vertex attribute.
glBindVertexArray(GL_NONE);

其中glVertexAttribDivisor(2, 1);是上述最重要的一步,用于指定 index = 2 的属性为实例化数组,1 表示每绘制一个实例,更新一次数组中的元素。

利用顶点属性来定义的实例化数组,然后绘制出 125 个不同位置的立方体:

glUseProgram(m_ProgramObj);
glBindVertexArray(m_VaoId);

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, m_TextureId);
glUniform1i(m_SamplerLoc, 0);

glDrawArraysInstanced(GL_TRIANGLES, 0, 36, 125);
glBindVertexArray(0);

联系与交流

技术交流/获取源码可以添加我的微信:Byte-Flow

「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领域一流工程师交流切磋。

阿里云社区.png

相关实践学习
通过GPU云服务器生成AI视频
本教程介绍如何使用GPU云服务器搭建Stable Diffusion模型,并基于ModelScope框架,实现使用文本生成视频。
相关文章
|
存储 缓存 开发工具
|
IDE 开发工具 C语言
OpenGL学习笔记(七):创建第一个Qt5.9.3 OpenGL工程模版(与平台无关)
OpenGL学习笔记(七):创建第一个Qt5.9.3 OpenGL工程模版(与平台无关)
OpenGL学习笔记(七):创建第一个Qt5.9.3 OpenGL工程模版(与平台无关)
|
IDE Linux 开发工具
OpenGL学习笔记(五):创建OpenGL工程模板前的所有准备工作
OpenGL学习笔记(五):创建OpenGL工程模板前的所有准备工作
OpenGL学习笔记(五):创建OpenGL工程模板前的所有准备工作
|
存储 缓存 异构计算
NDK OpenGL ES 3.0 开发(二十二):PBO
OpenGL PBO(Pixel Buffer Object),被称为像素缓冲区对象,主要被用于异步像素传输操作。PBO 仅用于执行像素传输,不连接到纹理,且与 FBO (帧缓冲区对象)无关。
435 0
NDK OpenGL ES 3.0 开发(二十二):PBO
|
计算机视觉 索引
NDK OpenGL ES 3.0 开发(二十一):3D 模型加载和渲染
3D 模型的设计一般是由许多小模型拼接组合成一个完整的大模型,一个小模型作为一个独立的渲染单元,我们称这些小模型为网格(Mesh)。
228 0
NDK OpenGL ES 3.0 开发(二十一):3D 模型加载和渲染
|
API 开发工具 Android开发
NDK OpenGL ES 3.0 开发(二十):3D 模型
OpenGLES 3D 模型本质上是由一系列三角形在 3D 空间(OpenGL 坐标系)中构建而成,另外还包含了用于描述三角形表面的纹理、光照、材质等信息。
387 0
NDK OpenGL ES 3.0 开发(二十):3D 模型
|
vr&ar 流计算 异构计算
NDK OpenGL ES 3.0 开发(十四):粒子(Particles)
粒子系统本质上是通过一次或者多次渲染绘制出大量位置、形状或者颜色不同的物体(粒子),形成大量粒子运动的视觉效果。所以,粒子系统天然适合用OpenGL ES 实例化(Instancing)实现。
361 0
NDK OpenGL ES 3.0 开发(十四):粒子(Particles)
|
Windows 容器
NDK OpenGL ES 3.0 开发(十二):混合
OpenGL ES 混合本质上是将 2 个片元的颜色进行调和,产生一个新的颜色。OpenGL ES 混合发生在片元通过各项测试之后,准备进入帧缓冲区的片元和原有的片元按照特定比例加权计算出最终片元的颜色值,不再是新(源)片元直接覆盖缓冲区中的(目标)片元。
201 0
NDK OpenGL ES 3.0 开发(十二):混合
NDK OpenGL ES 3.0 开发(十一):模板测试
模板测试与深度测试类似,主要作用是利用模板缓冲区(Stencil Buffer)所保存的模板值决定当前片段是否被丢弃,且发生于深度测试之前。
197 0
NDK OpenGL ES 3.0 开发(十一):模板测试
|
存储 Java API
NDK OpenGL ES 3.0 开发(六):EGL
EGL 是 OpenGL ES 和本地窗口系统(Native Window System)之间的通信接口
413 0
NDK OpenGL ES 3.0 开发(六):EGL
相关产品
推荐文章
更多