C++第9周项目3 - 实现分数类中的运算符重载

简介: 课程首页地址:http://blog.csdn.net/sxhelijian/article/details/7910565,本周题目链接:http://blog.csdn.net/sxhelijian/article/details/8841620【项目3-分数类】接第8周项目3,定义分数类中<<和>>运算符重载,实现分数的输入输出,改造原程序中对运算结果显示方式

课程首页地址:http://blog.csdn.net/sxhelijian/article/details/7910565,本周题目链接:http://blog.csdn.net/sxhelijian/article/details/8841620


【项目3-分数类】接第8周项目3,定义分数类中<<和>>运算符重载,实现分数的输入输出,改造原程序中对运算结果显示方式,使程序读起来更自然。

参考解答:

#include <iostream>
#include <Cmath>
using namespace std;
class CFraction
{
private:
    int nume;  // 分子
    int deno;  // 分母
public:
    CFraction(int nu=0,int de=1):nume(nu),deno(de) {}
    void simplify();

    //输入输出的重载
    friend istream &operator>>(istream &in,CFraction &x);
    friend ostream &operator<<(ostream &out,CFraction x);

    CFraction operator+(const CFraction &c);  //两个分数相加,结果要化简
    CFraction operator-(const CFraction &c);  //两个分数相减,结果要化简
    CFraction operator*(const CFraction &c);  //两个分数相乘,结果要化简
    CFraction operator/(const CFraction &c);  //两个分数相除,结果要化简
    CFraction operator+();  //取正一目运算
    CFraction operator-();  //取反一目运算
    bool operator>(const CFraction &c);
    bool operator<(const CFraction &c);
    bool operator==(const CFraction &c);
    bool operator!=(const CFraction &c);
    bool operator>=(const CFraction &c);
    bool operator<=(const CFraction &c);
};

// 分数化简
void CFraction::simplify()
{
    int m,n,r;
    n=fabs(deno);
    m=fabs(nume);
    while(r=m%n)  // 求m,n的最大公约数
    {
        m=n;
        n=r;
    }
    deno/=n;     // 化简
    nume/=n;
    if (deno<0)  // 将分母转化为正数
    {
        deno=-deno;
        nume=-nume;
    }
}

// 重载输入运算符>>
istream &operator>>(istream &in,CFraction &x)
{
    char ch;
    while(1)
    {
        cin>>x.nume>>ch>>x.deno;
        if (x.deno==0)
            cerr<<"分母为0, 请重新输入\n";
        else if(ch!='/')
            cerr<<"格式错误(形如m/n)! 请重新输入\n";
        else
            break;
    }
    return cin;
}

// 重载输出运算符<<
ostream &operator<<(ostream &out,CFraction x)
{
    cout<<x.nume<<'/'<<x.deno;
    return cout;
}

// 分数相加
CFraction CFraction::operator+(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.deno+c.nume*deno;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}

// 分数相减
CFraction CFraction:: operator-(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.deno-c.nume*deno;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}

// 分数相乘
CFraction CFraction:: operator*(const CFraction &c)
{
    CFraction t;
    t.nume=nume*c.nume;
    t.deno=deno*c.deno;
    t.simplify();
    return t;
}

// 分数相除
CFraction CFraction:: operator/(const CFraction &c)
{
    CFraction t;
    if (!c.nume) return *this;   //除法无效(除数为)时,这种情况需要考虑,但这种处理仍不算合理
    t.nume=nume*c.deno;
    t.deno=deno*c.nume;
    t.simplify();
    return t;
}

// 分数取正号
CFraction CFraction:: operator+()
{
    return *this;
}

// 分数取负号
CFraction CFraction:: operator-()
{
    CFraction x;
    x.nume=-nume;
    x.deno=deno;
    return x;
}

// 分数比较大小
bool CFraction::operator>(const CFraction &c)
{
    int this_nume,c_nume,common_deno;
    this_nume=nume*c.deno;        // 计算分数通分后的分子,同分母为deno*c.deno
    c_nume=c.nume*deno;
    common_deno=deno*c.deno;
    if ((this_nume-c_nume)*common_deno>0) return true;
    return false;
}

// 分数比较大小
bool CFraction::operator<(const CFraction &c)
{
    int this_nume,c_nume,common_deno;
    this_nume=nume*c.deno;
    c_nume=c.nume*deno;
    common_deno=deno*c.deno;
    if ((this_nume-c_nume)*common_deno<0) return true;
    return false;
}

// 分数比较大小
bool CFraction::operator==(const CFraction &c)
{
    if (*this!=c) return false;
    return true;
}

// 分数比较大小
bool CFraction::operator!=(const CFraction &c)
{
    if (*this>c || *this<c) return true;
    return false;
}

// 分数比较大小
bool CFraction::operator>=(const CFraction &c)
{
    if (*this<c) return false;
    return true;
}

// 分数比较大小
bool CFraction::operator<=(const CFraction &c)
{
    if (*this>c) return false;
    return true;
}

int main()
{
    CFraction x,y,s;
    cout<<"输入x: ";
    cin>>x;
    cout<<"输入y: ";
    cin>>y;
    s=+x+y;
    cout<<"+x+y="<<s<<endl;
    s=x-y;
    cout<<"x-y="<<s<<endl;
    s=x*y;
    cout<<"x*y="<<s<<endl;
    s=x/y;
    cout<<"x/y="<<s<<endl;
    s=-x+y;
    cout<<"-x+y="<<s<<endl;

    cout<<x;
    if (x>y) cout<<"大于";
    if (x<y) cout<<"小于";
    if (x==y) cout<<"等于";
    cout<<y<<endl;
    return 0;
}


目录
相关文章
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
83 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
164 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
161 12
|
6月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
123 16
|
7月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
6月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
6月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
6月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
322 6