记一次Cassandra Java堆外内存排查经历

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
简介: 背景 最近准备上线cassandra这个产品,同事在做一些小规格ECS(8G)的压测。压测时候比较容易触发OOM Killer,把cassandra进程干掉。问题是8G这个规格我配置的heap(Xmx)并不高(约6.5g)已经留出了足够的空间给系统。

背景

最近准备上线cassandra这个产品,同事在做一些小规格ECS(8G)的压测。压测时候比较容易触发OOM Killer,把cassandra进程干掉。问题是8G这个规格我配置的heap(Xmx)并不高(约6.5g)已经留出了足够的空间给系统。只有可能是Java堆外内存使用超出预期,导致RES增加,才可能触发OOM。

调查过程

0.初步怀疑是哪里有DirectBuffer泄漏,或者JNI库的问题。
1.按惯例通过google perftools追踪堆外内存开销,但是并未发现明显的异常。
2.然后用Java NMT 看了一下,也没有发现什么异常。
0e964369341ad29ff6ea1e20ea75f0d3ed8e963f

3.查到这里思路似乎断了,因为跟DirectBuffer似乎没啥关系。这时候我注意到进程虚拟内存非常高,已经超过ECS内存了。怀疑这里有些问题。
ab6a0b6198cf86c4de8eac020f0c472564241cb8

4.进一步通过/proc/pid/smaps 查看进程内存地址空间分布,发现有大量mmap的文件。这些文件是cassandra的数据文件。
956c61ef2bcd58ba40d0f498350619730ee14a26

此时这些mmap file 虚拟内存是2G,但是物理内存是0(因为我之前重启过,调低过内存防止进程挂掉影响问题排查)。

显然mmap的内存开销是不受JVM heap控制的,也就是堆外内存。如果mmap的文件数据被从磁盘load进物理内存(RES增加),Java NMT和google perftool是无法感知的,这是kernel的调度过程。

5.考虑到是在压测时候出现问题的,所以我只要读一下这些文件,观察下RES是否会增加,增加多少,为啥增加,就能推断问题是不是在这里。通过下面的命令简单读一下之前导入的数据。

cassandra-stress read duration=10m cl=ONE -rate threads=20 -mode native cql3 user=cassandra password=123 -schema keysp
ace=keyspace5 -node core-3

6.可以观察到压测期间(sar -B),major page fault是明显上升的,因为数据被实际从磁盘被load进内存。
4944c8972d4df6a173c805cf7d5e91aa6049c49f

同时观察到mmap file物理内存增加到20MB:
3751993b8ffc483ab37658181e40585a685b0d06

最终进程RES涨到7.1g左右,增加了大约600M:
2c56dc8fad29d7266a6e67ca6601d319c6914b76

如果加大压力(50线程),还会涨,每个mmap file物理内存会从20MB,涨到40MB

7.Root cause是cassandra识别系统是64还是32来确定要不要用mmap,ECS都是64,但是实际上小规格ECS内存并不多。
27b11488d70f5a5d36d0d5ff6af8c706b1578e46

结论

1.问题诱因是mmap到内存开销没有考虑进去,具体调整方法有很多。可以针对小规格ECS降低heap配置或者关闭mmap特性(disk_access_mode=standard)
2.排查Java堆外内存还是比较麻烦的,推荐先用NMT查查,用起来比较简单,配置JVM参数即可,可以看到内存申请情况。

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
31 0
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
40 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
58 5
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
1月前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
44 0
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
381 1
|
2月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
2月前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
27 3