内核必须懂(七): Linux四级页表(x64)

简介: 目录前言Intel四级页表实操寻址获取cr3获取PGD获取PUD获取PMD获取PTE获取内容最后前言Linux四级页表的作用主要就是地址映射, 将逻辑地址映射到物理地址.

目录

  • 前言
  • Intel四级页表
  • 实操寻址
  • 获取cr3
  • 获取PGD
  • 获取PUD
  • 获取PMD
  • 获取PTE
  • 获取内容
  • 最后

前言

Linux四级页表的作用主要就是地址映射, 将逻辑地址映射到物理地址. 很多时候, 有些地方想不明白就可以查看实际物理地址进行分析.


Intel 四级页表

其实很多设计的根源或者说原因都来自于CPU的设计, OS很多时候都是辅助CPU. Linux的四级页表就是依据CPU的四级页表来设计的. 这里主要说的就是Intel x64页面大小为4KB的情况, 如图所示:

当然, 你可以用指令确认下:

getconf PAGE_SIZE 


实操寻址

首先这里先贴出几个工具, fileview, dram, registers. 这些都是可以帮助快速获取地址的, 上一篇文章说的kgdb工具也是可以的, 就是麻烦一点, 你懂的. 具体内容就不贴了, 这里仅展示用户态的代码:

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>

#define BUFSIZE 4096

int main()
{
    int            fd, ret;
    char            buf[BUFSIZE];
    unsigned long int    a = 0x1234567890abcdef;
    printf( "a=0x%016lX addr: %p \n", a, &a );

    if ( (fd = open( "/proc/registers", O_RDONLY ) ) < 0 )
    {
        fprintf( stderr, "Open /proc/registers file failed! \n" );
        exit( EXIT_FAILURE );
    }

    lseek( fd, 0L, SEEK_SET );

    if ( (ret = read( fd, buf, sizeof buf - 1 ) ) < 0 )
    {
        perror( "/proc/registers" );
        exit( EXIT_FAILURE );
    }

    buf[ret] = 0;
    close( fd );
    puts( buf );

    while ( 1 );
    return(0);
}

使用make指令编译工具, 插入dram.ko和registers.ko驱动模块. 编译运行用户态程序, 如图所示:


获取cr3

这之中最关键的是cr3地址以及局部变量地址, 这里看到, 变量地址是0x7ffdcbffaba8, 变量值是0x1234567890ABCDEF. cr3寄存器中地址是0x40c78000. 当然了, 按照CPU的图示, cr3肯定是指向PML4E. 在Linux当中, 第一级页表称为PGD, 当然是有历史原因的, 可以自行google. 所以Linux的四级页表分别是PGD -> PUD -> PMD -> PTE.


获取PGD

想要获取PGD中的内容需要通过计算. 这里先来处理一下局部变量地址. 首先写成二进制.

0x7ffdcbffaba8
0111 1111 1111 1101 1100 1011 1111 1111 1010 1011 1010 1000

然后按照Intel的设计, 重新整合.

011111111 111110111 001011111 111111010 101110101000

重新写成16进制:

ff 1f7 5f 1fa ba8

这就是只要用的offset. 因为每个单元是64-bits因此需要在序号基础上乘以8获得地址. 所以PGD地址为:

0x40c78000(cr3) + ff * 8 = 0x40c787f8

然后使用启动之前编译的小工具:

./fileview /dev/dram

输入之前计算出来的地址0x40c787f8, 就可以得到之中的内容, 也就是PUD, 从CPU图来说就是PDPTE:


获取PUD

这里获取到的是67 50 75 76 00 00 00 80, 但是注意, Intel是和显示顺序反过来的. 也就是76755067, 然后后面的12-bits是页面属性. 所以, 具体地址就是:

76755000 + 1f7 * 8 = 76755fb8

同样输入地址到工具, 得到67 80 E8 2C 00 00 00 00.


获取PMD

直接计算了:

2ce88000 + 5f * 8 = 2ce882f8

得到67 00 DD 48 00 00 00 00.


获取PTE

直接计算了:

48dd0000 + 1fa * 8 = 48dd0fd0

得到67 58 59 20 00 00 00 80.

获取内容

最后就可以获取到内容了:

20595000 + ba8 = 20595ba8


最后

当然了, 这次是在用户态下进行从线性地址到物理地址转换的, 如果是内核态有些地方会发生变化. 暂时写到这里, 内核态等后续的更新了. 喜欢记得点赞, 有意见或者建议评论区见~


目录
相关文章
|
11天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
45 4
|
15天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
36 6
|
6天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
14天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
42 9
|
13天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
35 6
|
14天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
34 5
|
14天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
15天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
14天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
13天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
32 2
下一篇
无影云桌面