表面瑕疵检测系统正在迅速取代人工视觉检测

简介: **表面瑕疵检测系统正在迅速取代人工视觉检测**   据了解到,在当前大批量工业自动生产过程中,用人工检查产品质量效率过低且精度不高;和其他一些人工视觉检测难以满足要求的场合,表面瑕疵检测系统正在迅速取代人工视觉检测。

  据了解到,在当前大批量工业自动生产过程中,用人工检查产品质量效率过低且精度不高;和其他一些人工视觉检测难以满足要求的场合,表面瑕疵检测系统正在迅速取代人工视觉检测。事实上,也正因如此,在世界上现代自动化生产过程中表面瑕疵检测系统已广泛应用于带钢、薄膜、金属、纸张、无纺布、玻璃等领域。

  机器视觉就是用机器代替人眼来做测量和判断,视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如缺陷、尺寸等数据)。系统采用CCD相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。图像系统对 这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等。最后,根据预设的容许度和其他条件输出结果,如:缺陷、尺寸、角度、偏移量、个数、合格 /不合格、有/无等。上位机(如PC和PLC)实时获得检测结果后,指挥运动系统或I/O系统执行相应的控制动作(如定位和分类)。

  表面瑕疵检测主要技术指标:

  1、测量精度:0.1mm以上的斑点、污点、孔洞等瑕疵;

  2、适用宽度:按要求定制;

  3、CCD数量:依被测物宽度及检测精度决定;

  4、检测常见的瑕疵,对瑕疵缺陷信息进行处理,实时提供瑕疵的位置、大小,以及记录供用户参考核对;

  5、系统可设置瑕疵报警的参数,用户可根据生产要求设置报警线,实现声光报警并对不合格位置在线做标记。

相关文章
|
6月前
|
机器学习/深度学习 编解码 API
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
|
机器学习/深度学习 人工智能 数据库
【表面缺陷检测】表面缺陷检测数据集汇总
本文收集整理了16个表面缺陷检测相关的数据集,并对每个数据集的特点进行了简单的介绍。
【表面缺陷检测】表面缺陷检测数据集汇总
|
6月前
|
传感器 编解码 监控
LabVIEW基于机器视觉的钢轨表面缺陷检测系统
LabVIEW基于机器视觉的钢轨表面缺陷检测系统
91 3
|
6月前
|
传感器 编解码 计算机视觉
事件相机 PROPHESEE EVK4紧凑基于事件的 高清视觉评估套件 视觉传感 EVK4
探索基于事件的视觉,从 PROPHESEE EVK4 HD 开始。这款超轻、紧凑的高清 Metavision ®评估套件,可承受现场测试条件。集成 IMX636(高清),堆叠式事件视觉传感器由索尼半导体解决方案公司发布,由索尼和 PROPHESEE 合作实现。
事件相机 PROPHESEE EVK4紧凑基于事件的 高清视觉评估套件 视觉传感 EVK4
|
传感器 定位技术 图形学
SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建(2)
SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建
208 0
|
传感器 机器学习/深度学习 算法
SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建(1)
SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建
228 0
|
传感器 机器学习/深度学习 算法
CVPR 2023 | 移动传感器引导的跨时节六自由度视觉定位,准确且高效
CVPR 2023 | 移动传感器引导的跨时节六自由度视觉定位,准确且高效
225 0
|
编解码 人工智能 算法
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(下)
本文作者提出了一种鲁棒的车道检测和跟踪方法来检测车道线,该方法主要介绍了三个关键技术。首先,应用双边滤波器来平滑和保留边缘,引入了一个优化的强度阈值范围(OITR)来提高canny算子的性能,该算子检测低强度(有色、腐蚀或模糊)车道标记的边缘。第二,提出了一种稳健的车道验证技术,即基于角度和长度的几何约束(ALGC)算法,然后进行霍夫变换,以验证车道线的特征并防止不正确的车道线检测。最后,提出了一种新的车道线跟踪技术,即水平可调车道重新定位范围(HALRR)算法,该算法可以在左、右或两条车道标记在短时间内部分和完全不可见时跟踪车道位置。
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(下)
|
传感器 编解码 人工智能
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(上)
本文作者提出了一种鲁棒的车道检测和跟踪方法来检测车道线,该方法主要介绍了三个关键技术。首先,应用双边滤波器来平滑和保留边缘,引入了一个优化的强度阈值范围(OITR)来提高canny算子的性能,该算子检测低强度(有色、腐蚀或模糊)车道标记的边缘。第二,提出了一种稳健的车道验证技术,即基于角度和长度的几何约束(ALGC)算法,然后进行霍夫变换,以验证车道线的特征并防止不正确的车道线检测。最后,提出了一种新的车道线跟踪技术,即水平可调车道重新定位范围(HALRR)算法,该算法可以在左、右或两条车道标记在短时间内部分和完全不可见时跟踪车道位置。
2022最新!更面向工业场景:基于视觉方案不同挑战下的车道检测与跟踪(上)
|
机器学习/深度学习 算法 数据处理
halcon视觉缺陷检测系列(1)常用的6种方法
halcon视觉缺陷检测系列(1)常用的6种方法
2389 0
halcon视觉缺陷检测系列(1)常用的6种方法
下一篇
无影云桌面