SIGIR阿里论文 | 一种端到端的模型:基于异构内容流的动态排序

简介: 小叽导读:搜索引擎在电商领域扮演着极其重要的角色,它可以很好地引导用户的潜在购买行为。传统电商搜索引擎通常指商品搜索引擎,用户输入一个query,返回一个商品列表。然而,随着自媒体的发展,越来越多的用户更愿意分享自己的购物体验,他们以文章、评价和视频等形式将自己的观点展示出来。

小叽导读:搜索引擎在电商领域扮演着极其重要的角色,它可以很好地引导用户的潜在购买行为。传统电商搜索引擎通常指商品搜索引擎,用户输入一个query,返回一个商品列表。然而,随着自媒体的发展,越来越多的用户更愿意分享自己的购物体验,他们以文章、评价和视频等形式将自己的观点展示出来。在这篇文章中,这些统称为内容流。为了给用户提供更多的购物帮助,内容搜索引擎应运而生。在用户搜索商品的时候,给用户推荐高质量的内容流,帮助用户选择自己中意的以及用户可能喜欢的商品。

▌研究背景:

目前,对于异构数据的排序还存在很多的挑战。首先,商品搜索引擎和内容搜索引擎所提供的跨领域知识要被充分利用,使用户在商品搜索引擎中的行为偏好应用到内容搜索引擎中。其次,现有的算法需要支持多媒体内容的排序。
image
在本文中,我们的目标是解决商品搜索引擎和内容搜索引擎中异构数据排序的问题,给用户推荐丰富的、个性化的内容流。我们把算法分成了两部分:1)异构内容流类型排序,即决定每个坑位展示何种类型的内容流,文章、视频还是商品列表;2)同构的内容流内容排序,第二个步骤使用广为人知的DSSM模型,在这个内容流类型下,对内容流的内容进行排序,选择相似度最高的内容插入。本文主要聚焦在第一个步骤。

▌ 所提出的算法:

本文提出两种算法用于内容流类型的排序,独立多臂老虎机算法和个性化马尔科夫深度神经网络算法。

在独立多臂老虎机算法中,我们需要计算一个比例θ,由ipv和pv计算而来,如果θ更高,表示当用户在搜索列表中看到这个内容流的时候,更有可能点击。对于每一个搜索坑位,我们先会计算一个θ的先验分布,这里我们使用Beta分布image, 其中i表示post, list, video。image 代表类型i的历史ipv点击数据,image表示历史浏览数据。image的期望是image,后验概率分布通过一个实时的流数据任务来更新。表示为如下的概率公式:
image
通过这种方式,所有坑位的内容流类型都是独立的,伪代码如下:
image
有依赖的异构数据流类型选择由三种因素决定:用户,query和前一个坑位类型。首先,在同一个query下,用户可以表示出不同的偏好。比如用户搜索“连衣裙”,某个用户可能更偏好介绍的文章,另一个用户可能会更喜欢视频的介绍。而且,没有用户喜欢单一的类型展示,或多或少都喜欢多元化的内容流类型的排列。针对同一个query,应该给不同的用户展示不同的排序结果。我们提出的个性化马尔科夫深度神经网络算法包含两个步骤,包括对用户和query的表示任务学习和坑位类型的预测学习。

用户和query的低维表示 我们构建了一个graph,包含用户,query和内容。使用node2vec学习用户和query的embedding,如下图:

image

图中的中间部分是训练节点的embedding表示。输入层是节点的独热编码。权重矩阵W是所有节点的embedding,其将节点独热编码映射到一个D维的空间中。

坑位类型预测 我们的目标函数定义为
image
其中X表示输入第i个坑位的特征,为了简化我们pMDNN模型并且加速运行的速度,我们只使用跟当前预测的坑位前一个坑位的信息。然而这带来了一个问题,如何预测第一个坑位的类型,这里我们使用到了跨领域知识,我们从用户最近在商品搜索引擎中浏览的宝贝信息中抽取将其映射为内容搜索坑位特征,使其满足当前模型的输入要求。我们的模型输入层为用户的embedding,query embedding和前一个坑位的embedding。可以表示为
image
三个全连接层接入输入层中。每一层使用一个线性分类器和交叉熵作为loss function。激活函数选择Relu,输出层应用Softmax为激活函数。

▌ 实验结果:

我们将提出的模型部署到A/B测试分桶环境中,选择了5个主要的指标来对比两个模型iMAB和pMDNN。pv代表展示内容的个数;pvclick表示展示的内容多少被点击;uv是多少个用户使用了内容搜索引擎,uv click表示多少用户点击了内容流;至于uv ctr,表示用户是否点击内容流的比率。

下表展示了实验结果,其中pMDNN的实验结果优于iMAB。尤其是uv click和uv ctr,这对于我们的场景非常重要,因为uv click的增长表示更多的用户倾向于内容搜索引擎因为其能帮助他们更好的购物。同时,uv ctr的增长展示出使用内容搜索引擎的用户对我们推荐的内容流是认可的。至于pv click的提高也代表了我们提出的模型更加的符合用户的个性化需求。

基于pv click和uv ctr,我们可以认为pMDNN应用了跨领域知识并且全局优化多坑位类型确实要优于坑位独立的iMAB。

image
原文发布时间为:2018-06-29
本文作者:阿里巴巴机器智能
本文来自云栖社区合作伙伴“ 阿里技术”,了解相关信息可以关注“ 阿里技术”。

相关文章
|
2月前
|
SQL 算法 API
微信基于 StarRocks 的实时因果推断实践
本文介绍了因果推断在业务中的应用,详细阐述了基于 StarRocks 构建因果推断分析工具的技术方案,通过高效算子的支持,大幅提升了计算效率。例如,t 检验在 6亿行数据上的执行时间仅需 1 秒。StarRocks 还实现了实时数据整合,支持多种数据源(如 Iceberg 和 Hive)的无缝访问,进一步增强了平台的灵活性与应用价值。
|
4月前
|
人工智能 物联网 Python
VMix:即插即用!字节联合中科大推出增强模型生成美学质量的开源适配器,支持多源输入、高质量视频处理
VMix 是一款创新的即插即用美学适配器,通过解耦文本提示和交叉注意力混合控制,显著提升图像生成的美学质量,支持多源输入和高质量视频处理。
187 11
VMix:即插即用!字节联合中科大推出增强模型生成美学质量的开源适配器,支持多源输入、高质量视频处理
|
6月前
|
机器学习/深度学习 存储 监控
实时特征处理框架:构建与应用实践
在大数据时代,实时特征处理框架成为数据驱动应用的核心组件。这些框架能够从海量数据中提取特征,并实时更新,为机器学习模型提供动力。本文将探讨实时特征框架的构建和生产实践,分享如何构建一个高效、稳定的实时特征处理系统。
100 2
|
6月前
|
机器学习/深度学习 存储 监控
实时特征处理框架:构建与优化实践
在大数据时代,实时特征处理框架在机器学习、数据分析和实时监控等领域扮演着至关重要的角色。这类框架能够快速处理和分析海量数据,为决策提供即时的洞察。本文将探讨实时特征处理框架的构建、优化及其在生产环境中的实践应用。
123 1
|
11月前
|
搜索推荐 API 对象存储
10分钟学会构建端到端的图片搜索服务
本文介绍在没有向量数据的情况下,怎样通过OpenSearch-向量检索版快速从零搭建图像搜索服务。
83158 69
|
9月前
|
算法 语音技术
支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢
支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢
|
机器学习/深度学习 编解码 计算机视觉
|
11月前
|
机器学习/深度学习 监控
【机器学习】基于扩散模型的文本到音频生成:突破数据局限,优化音频概念与实践顺序
【机器学习】基于扩散模型的文本到音频生成:突破数据局限,优化音频概念与实践顺序
285 0
|
SQL 存储 监控
构建端到端的开源现代数据平台
构建端到端的开源现代数据平台
507 4
|
机器学习/深度学习 计算机视觉 网络架构
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
554 0
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)