UnixBench的七个影响要素

本文涉及的产品
云服务器 ECS,每月免费额度280元 3个月
云服务器ECS,u1 2核4GB 1个月
简介: 前面有两篇分别介绍了UnixBench: UnixBench的实现介绍 UnixBench算分介绍 这次要介绍下不同场景下,为什么分值有差异,有哪些需要考虑: 影响因素 1. CPU PIN住与非PIN住 这个场景主要是与国内云厂商的对比,他们的vm到现在都是非PIN住,也就是说如果在跑多进程业务,他们可以拿到很高的分值,当然也有概率拿到很低的分值。

前面有两篇分别介绍了UnixBench:

  1. UnixBench的实现介绍
  2. UnixBench算分介绍

    这次要介绍下不同场景下,为什么分值有差异,有哪些需要考虑:

影响因素

1. CPU PIN住与非PIN住

这个场景主要是与国内云厂商的对比,他们的vm到现在都是非PIN住,也就是说如果在跑多进程业务,他们可以拿到很高的分值,当然也有概率拿到很低的分值。有时候客户会只比较单进程,但是如Shell Scripts (8 concurrent),其实还是存在并发的,非绝对意义的单进程,所以CPU核数很重要的。
在主频差不多的情况下,那只能拿ECS的入门级实例(也是非PIN住的)对比,那效果差不多。但是我们推荐的是企业级实例,为什么推荐企业级实例(CPU是PIN住的),参考文章:2018云服务器选型指南·计算篇。那如果推荐了企业级实例,UnixBench的分值可能存在差距,但是如果多开几台友商的vm,就有概率测到vm很低分值的(掉到了一个拥挤的物理机)。

2. 主频差异

任何涉及计算相关的,CPU主频都是非常重要的,甚至是决定性因素。主频越高性能越好。
这时候不同云厂商对比性能的时候,一定要分清是高主频还是中主频,不同厂商即使都是中主频,差别也有点大。所以一定要对齐主频差异,才能做正确的对比。那如果对不齐,就只能讲稳定性了。

3. UnixBench算法缺陷一:Pipe-based Context Switching

UnixBench的子算法:Pipe-based Context Switching在不同的云厂商,性能差距巨大,这个算法的本意就是查看父子进程切换的效率。不同云厂商透露的拓扑结构不一样:
_2018_12_04_3_27_29

友商的做法会导致父子进程在同一个CPU,那么进程的切换成本就很低,这项分值就很高,比在物理机的分值还要高,这是一个不合理的现象。本意是要测父子进程在不同的CPU的进程切换效率,那么怎么办呢:对此我们针对这个程序做了一个简单的优化,确保父子进程在不同的CPU执行。具体测试办法:用aliyun版unixbench。下载unixbench.sh,执行它,会解决下载和执行。

   wget https://raw.githubusercontent.com/aliyun/byte-unixbench/master/unixbench.sh
   sh unixbench.sh

这里有一篇深入解析的文章:燕青: Unixbench 测试套件缺陷深度分析

4. UnixBench算法缺陷二:Double-Precision Whetstone

浮点数运算实现介绍,详见UnixBench的实现介绍
前面说了,主频差异会导致性能有差异,主频越高性能越好,而这个浮点数运算则是恰恰相反,高主频性能越差。
原因是:这个算法的本意是计算在这10秒内,能完成的最多的运算量。浮点数运算主要包含了:加减四则运算,条件切换,三角函数,指数运算。算法认为在一定的运算时间呢,这些运算随着运算量的增大,所需要的时间是线性的,所以才能控制在10秒。算法设计当初,估计都没考虑到主频有天能到3.0+GHz,使得最后一项运算量变成这么大。而这时候随着运算量增加,耗时也呈现指数级增加。而高主频的vm恰恰是前面的运算耗时很少,在2秒内可以完成大量运算,经过估算,以至于最后一次指数运算所需时间恰恰不是线性的了。我把最后一段代码抽取出来:
代码如下:

#include <stdio.h>
#include <math.h>

int main(int argc, char *argv[])
{
    long ix, i, xtra = atol(argv[1]), n8 = 93*x100;
    double x = 0.75;
    double t1 = 0.50000025;
    for (ix=0; ix < xtra; ix++)
    {
        for(i=0; i < n8; i++)
        {
             x = sqrt(exp(log(x)/t1));
        }
    }
}   

在一台高主频的vm,做单线程运算的耗时统计如下:

| 运算量 | 耗时 |
| -- | -- |
| 1000 | 0.820 |
| 2000 | 1.509 |
| 3000 | 2.216 |
| 4000 | 2.909 |
| 5000 | 6.527 |

从上表可以看出,到超过4000的时候,其耗时已经非线性。那么这个算法是不公平的,高主频的VM运输量偏大,导致耗时增加,性能分下降。可以做一个简单修改,在第一个for循环里面,每次都做初始化x=0.75,那么可以保证其运输量是线性了。

其他影响因素:

  • 编译选项差异:默认是采用gcc编译,如果采用icc编译性能,可以显著提升。dry2stone整数运算,性能可以提升7.9%。
  • 内核参数调整:打开halt polling,可以让Pipe-based Context Switching性能提升一倍多,但是对应功耗也显著提升,默认云厂商好像都不打开该选项。
  • 进程干扰:unixbench都是些非常基础的进程的操作,所以尽可能地减少其他进程干扰,可以达到最好的性能。
目录
相关文章
|
12天前
|
存储 负载均衡 并行计算
实现优雅并行编程:确保正确性与提升性能的关键要素
在程序开发中,并行编程一种利用多个处理器或计算资源同时执行多个任务的编程方式,它能够提高计算效率和性能,是提高计算效率和性能的关键手段,但它也带来了一系列复杂的问题,涉及到任务分解、数据同步、资源分配等诸多复杂问题,稍有不慎就可能导致性能瓶颈、死锁甚至数据不一致等状况。编写优雅的并行程序需要在保证程序正确性的前提下,实现高效的并行计算。那么本文就来探讨一下如何在保证程序正确性的前提下,实现优雅的并行程序,以提升计算效率和性能,包括任务分解、数据同步和资源分配等方面的关键要素,希望能够为读者提供一些有用的指导和启示。
16 2
实现优雅并行编程:确保正确性与提升性能的关键要素
|
2月前
|
敏捷开发 数据采集 监控
质量内建落地的四要素
质量内建落地的四要素
28 0
|
9月前
|
数据采集 机器学习/深度学习 存储
量化高频交易系统策略模型开发搭建
量化高频交易系统策略模型开发搭建
|
10月前
|
算法 计算机视觉
图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响
图像生成过程中遭「截胡」:稳定扩散的失败案例受四大因素影响
|
测试技术 微服务
测试质量保障的影响因素
测试质量保障的影响因素
152 0
测试质量保障的影响因素
|
人工智能 BI 定位技术
生态系统服务——食物生产功能分布数据
生态系统服务——食物生产功能分布数据
生态系统服务——食物生产功能分布数据
|
SQL 存储 测试技术
|
负载均衡 Java 微服务
从JVM角度思考--如何预估线上环境机器资源大小
如何给JVM虚拟机巧妙地设计参数对大部分开发来说一直是个随缘的事情,可能是去网上拷贝一套参数,可能是沿用公司其他应用的参数。但是这个随缘的操作可能就会给未来留下隐患。给JVM分配的内存过大倒是没什么问题,无非浪费点资源,但是如果分配的内存过小,就有可能导致频繁的Full GC,给人一种系统一直很卡的感觉。这篇文章就通过一个实例分析一下如何结合场景设置JVM虚拟机参数。 当然,本文更重要的是希望能通过预估参数的这个过程,让你更加了解虚拟机内部的一些东西,要想最准确的参数设置,用一些工具记录下JVM各个区域的变化会更有效。
|
测试技术
【星云测试】精准测试的软件产品质量效率变化分析
伴随着软件规模的扩大和软件快速迭代的双重业务加速要求,软件质量控制的压力也越来越明显。但黑盒测试的无力感和白盒测试的高复杂度,让软件测试工程师和管理者都非常郁闷,多样化的自动化测试工具也解决不了根本性的问题。
2050 0