C++语言的单元测试与代码覆盖率

简介: # 前言 测试是软件开发过程中一个必须的环节,测试确保软件的质量符合预期。 对于工程师自己来说,单元测试也是一种提升自信心的方式。 直接交付没有经过测试的代码是不太好的,因为这很可能会浪费整个团队的时间,在一些原本早期就可以发现的问题上。而单元测试,就是发现问题一个很重要的环节。 本文以C++语言为基础,讲解如何进行单元测试并生成测试报告。 在工具上,我们会使用下面这

前言

测试是软件开发过程中一个必须的环节,测试确保软件的质量符合预期。

对于工程师自己来说,单元测试也是一种提升自信心的方式。

直接交付没有经过测试的代码是不太好的,因为这很可能会浪费整个团队的时间,在一些原本早期就可以发现的问题上。而单元测试,就是发现问题一个很重要的环节。

本文以C++语言为基础,讲解如何进行单元测试并生成测试报告。

在工具上,我们会使用下面这些:

  • GCC
  • CMake
  • Google Test
  • gcov
  • lcov

演示项目

为了方便本文的讲解,我专门编写了一个演示项目作为代码示例。

演示项目的源码可以在我的Github上获取:paulQuei/gtest-and-coverage

你可以通过下面几条命令下载和运行这个项目:

git clone https://github.com/paulQuei/gtest-and-coverage.git
cd gtest-and-coverage
./make_all.sh

要运行这个项目,你的机器上必须先安装好前面提到的工具。如果没有,请阅读下文以了解如何安装它们。

如果你使用的是Mac系统,下文假设你的系统上已经安装了brew包管理器。如果没有,请通过下面这条命令安装它:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

项目结构

演示项目的目录结构如下:

.
├── CMakeLists.txt
├── googletest-release-1.8.1.zip
├── include
│   └── utility.h
├── make_all.sh
├── src
│   └── utility.cpp
└── test
    └── unit_test.cpp

这里演示的内容是:以测试一个我们要提供的软件库为例,讲解如何对其进行单元测试并生成测试报告。

为了简单起见,这个软件库只有一个头文件和一个实现文件。

当然,在实际上的项目中,一个软件库会通常包含更多的文件,不过这并不影响我们要说明的问题。

演示项目中的文件说明如下:

文件名称 说明
make_all.sh 入口文件,会执行:编译,测试和生成报告等所有工作
CMakeLists.txt 项目的编译文件
googletest-release-1.8.1.zip google test源码压缩包
utility.h 待测试的软件库的头文件
utility.cpp 待测试的软件库的实现文件
unit_test.cpp 对软件库进行单元测试的代码

测试环境

演示项目在如下的环境中测试过。

  • MacBook Pro

    • 操作系统:macOS Mojave 10.14.1
    • 编译器:Apple LLVM version 10.0.0 (clang-1000.11.45.2)
    • CMake:cmake version 3.12.1
    • Google Test: 1.8.1
    • lcov: lcov version 1.13
  • Ubuntu

    • 操作系统:Ubuntu 16.04.5 LTS
    • 编译器:gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609
    • CMake:cmake version 3.5.1
    • Google Test:1.8.1
    • lcov:lcov version 1.12

关于CMake

为了简化编译的过程,这里使用CMake作为编译工具。关于CMake的更多内容请参见请官网:https://cmake.org

关于如何安装CMake请参见这里:Installing CMake

另外,你也可以通过一条简单的命令来安装CMake:

  • Mac系统:
brew install cmake
  • Ubuntu系统
sudo apt install cmake

由于篇幅所限,这里不打算对CMake做过多讲解,读者可以访问其官网或者在网络上搜寻其使用方法。

这里仅仅对演示项目中用到的内容做一下说明。演示项目中的CMakeLists.txt内容如下:

cmake_minimum_required(VERSION 2.8.11) ①
project(utility) ②

set(CMAKE_CXX_STANDARD 11) ③

set(GTEST googletest-release-1.8.1) ④
include_directories("./include" "${GTEST}/googletest/include/")
link_directories("build/gtest/googlemock/gtest/")

SET(CMAKE_CXX_FLAGS  "${CMAKE_CXX_FLAGS} --coverage") ⑤

add_library(${CMAKE_PROJECT_NAME}_lib src/utility.cpp) ⑥

add_executable(unit_test test/unit_test.cpp) ⑦
target_link_libraries(unit_test ${CMAKE_PROJECT_NAME}_lib gtest gtest_main pthread) ⑧

以编号为序,这段代码说明如下:

  1. 设置使用的CMake最低版本号为2.8.11。
  2. 指定项目的名称为"utility",项目名称可以通过${CMAKE_PROJECT_NAME}进行引用。
  3. 指定使用C++11。
  4. 这里的三行是编译google test,并将其头文件路径和编译结果的库文件路径添加到环境中。因为后面在编译单元测试代码的时候需要用到。
  5. 添加--coverage到编译器flag中,这个参数是很重要的,因为这是生成代码覆盖率所必须的。关于该编译参数的说明见这里:Program Instrumentation Options
  6. 编译我们的软件库,这里将生成libutility_lib.a库文件。
  7. 编译单元测试的可执行文件。
  8. 单元测试的可执行文件需要链接我们开发的软件库以及google test的库。另外,google test依赖了pthread,所以这个库也需要。

关于测试

软件测试有很多种分类方式。从测试的级别来说,可以大致分为:

  • 单元测试
  • 集成测试
  • 系统测试

这其中,单元测试是最局部和具体的。它通常需要对代码中的每一个类和函数进行测试。

单元测试通常由开发者完成,需要针对代码逻辑进行测试。所以它是一种白盒测试

关于xUnit

xUnit是几种单元测试框架的总称。最早源于Smalltalk的单元测试框架SUnit,它是由Kent Beck开发的。

除此之外,还有针对Java语言的JUnit,针对R语言的RUnit。

在本文中,我们使用Google开发的xUnit框架:Google Test。

Google Test介绍

Google Test的项目主页在Github上:Github: Google Test

实际上,这个项目中同时包含了GoogleTest和GoogleMock两个工具,本文中我们只会讲解第一个。

Google Test支持的操作系统包含下面这些:

  • Linux
  • Mac OS X
  • Windows
  • Cygwin
  • MinGW
  • Windows Mobile
  • Symbian

目前有很多的项目都使用了Google Test,例如下面这些:

编译Google Test

关于如何编译Google Test请参见这里:Generic Build Instructions

为了便于读者使用,我们在演示项目中包含了Google Test 1.8.1的源码压缩包。并且在CMake文件中,同时包含了Google Test的编译和使用配置工作。

如果使用演示项目,读者将不需要手动处理Google Test的编译和安装工作。

使用Google Test

演示项目代码说明

为了便于下文说明,演示项目中包含了几个简单的函数。

可以从这里下载源码以便查看其中的内容:paulQuei/gtest-and-coverage

演示项目中的软件库包含一个头文件和一个实现文件。头文件内容如下:

// utility.h

#ifndef INCLUDE_UTILITY_
#define INCLUDE_UTILITY_

enum CalcType {
   
    ADD,
    MINUS,
    MULTIPLE,
    DIVIDE
};

class Utility {
   
public:
    int ArithmeticCalculation(CalcType op, int a, int b);

    double ArithmeticCalculation(CalcType op, double a, double b);

    bool IsLeapYear(int year);
};

#endif

这个头文件说明如下:

  • 头文件包含了三个函数,前两个用来做intdouble类型的四则运算。最后一个判断输入的年份是否是闰年。
  • 当然,在实际的工程中,前两个函数合并实现为一个泛型函数更为合适。但这里之所以分成两个,是为了查看代码覆盖率所用。
  • 关于闰年说明如下:
    • 能被4整除但不能被100整除的年份为普通闰年。
    • 能被100整除,也同时能被400整除的为世纪闰年。
    • 其他都不是闰年。
    • 例如:1997年不是闰年,2000年是闰年,2016年是闰年,2100不是闰年。

这三个函数的实现也不复杂:

// utility.cpp

#include "utility.h"

#include <iostream>
#include <limits>

using namespace std;

int Utility::ArithmeticCalculation(CalcType op, int a, int b) {
   
    if (op == ADD) {
   
        return a + b;
    } else if (op == MINUS) {
   
        return a - b;
    } else if (op == MULTIPLE) {
   
        return a * b;
    } else {
   
        if (b == 0) {
   
            cout << "CANNO Divided by 0" << endl;
            return std::numeric_limits<int>::max();
        }
        return a / b;
    }
}

double Utility::ArithmeticCalculation(CalcType op, double a, double b) {
   
    if (op == ADD) {
   
        return a + b;
    } else if (op == MINUS) {
   
        return a - b;
    } else if (op == MULTIPLE) {
   
        return a * b;
    } else {
   
        if (b == 0) {
   
            cout << "CANNO Divided by 0" << endl;
            return std::numeric_limits<double>::max();
        }
        return a / b;
    }
}

bool Utility::IsLeapYear(int year) {
   
    if (year % 100 == 0 && year % 400 == 0) {
   
        return true;
    }
    if (year % 100 != 0 && year % 4 == 0) {
   
        return true;
    }
    return false;
}

开始测试

接下来我们就要对上面这些代码进行测试了。

要使用Google Test进行测试,整个过程也非常的简单。只要进行下面三部:

  1. 创建一个测试用的cpp文件
  2. 为上面这个测试用的cpp文件编写Makefile(或者CMake文件)。同时链接:
    • 待测试的软件库
    • gtest
    • gtest_main
    • pthread库(Google Test使用了这个库所以需要)
  3. 编写测试代码,编译并运行测试的可执行程序。

并且,测试代码写起来也非常的简单,像下面这样:

#include "utility.h"

#include "gtest/gtest.h"

TEST(TestCalculationInt, ArithmeticCalculationInt) {
   
    Utility util;
    EXPECT_EQ(util.ArithmeticCalculation(ADD, 1, 1), 2);
    EXPECT_EQ(util.ArithmeticCalculation(MINUS, 2, 1), 1);
    EXPECT_EQ(util.ArithmeticCalculation(MULTIPLE, 3, 3), 9);
    EXPECT_EQ(util.ArithmeticCalculation(DIVIDE, 10, 2), 5);
    EXPECT_GT(util.ArithmeticCalculation(DIVIDE, 10, 0), 999999999);
}

是的,就是这么简单的几行代码,就对整数四则运算的函数进行了测试。

TEST后面所包含的内容称之为一条case,通常我们会为每个函数创建一个独立的case来进行测试。一个测试文件中可以包含很多条case。同时,一条case中会包含很多的判断(例如EXPECT_EQ...)。

注意:在做单元测试的时候,保证每条case是独立的,case之间没有前后依赖关系是非常重要的。

当然,测试代码中包含的判断的多少将影响测试结果的覆盖率。所以在编写每条case的时候,我们需要仔细思考待测试函数的可能性,有针对性的进行测试代码的编写。

这段代码应该很好理解,它分别进行了下面这些测试:

  • 1 + 1 = 2
  • 2 - 1 = 1
  • 3 x 3 = 9
  • 10 / 2 = 5
  • 10 / 0 > 999999999

你可能会发现,这段代码里面甚至没有main函数。它也依然可以生成一个可执行文件。这就是我们链接gtest_main所起的作用。

在实际的测试过程中,你想判断的情况可能不止上面这么简单。下面我们来看看Google Test还能做哪些测试。

测试判断

Google Test对于结果的判断,有两种形式:

  • ASSERT_*:这类判断是Fatal的。一旦这个判断出错,则直接从测试函数中返回,不会再继续后面的测试。
  • EXPECT_*:这类判断是Nonfatal的。它的效果是,如果某个判断出错,则输出一个错误信息,但是接下来仍然会继续执行后面的测试。

可以进行的判断方法主要有下面这些:

布尔判断

Fatal Nonfatal 说明
ASSERT_TRUE(condition) EXPECT_TRUE(condition) 判断 condition 为 true
ASSERT_FALSE(condition) EXPECT_FALSE(condition) 判断 condition 为 false

二进制判断

Fatal Nonfatal 说明
ASSERT_EQ(expected, actual) EXPECT_EQ(expected, actual) 判断两个数值相等
ASSERT_NE(val1, val2) EXPECT_NE(val1, val2) val1 != val2
ASSERT_LT(val1, val2) EXPECT_LT(val1, val2) val1 < val2
ASSERT_LE(val1, val2) EXPECT_LE(val1, val2) val1 <= val2
ASSERT_GT(val1, val2) EXPECT_GT(val1, val2) val1 > val2
ASSERT_GE(val1, val2) EXPECT_GE(val1, val2) val1 >= val2

说明:

  • EQ:EQual
  • NE:Not Equal
  • LT:Less Than
  • LE:Less Equal
  • GT:Greater Than
  • GE:Greater Equal

字符串判断

Fatal Nonfatal 说明
ASSERT_STREQ(expected, actual) EXPECT_STREQ(expected, actual) 两个C string相同
ASSERT_STRNE(str1, str2) EXPECT_STRNE(str1, str2) 两个C string不相同
ASSERT_STRCASEEQ(exp, act) EXPECT_STRCASEEQ(exp, act) 忽略大小写,两个C string相同
ASSERT_STRCASENE(str1, str2) EXPECT_STRCASENE(str1, str2) 忽略大小写,两个C string不相同

浮点数判断

Fatal Nonfatal 说明
ASSERT_FLOAT_EQ(exp, act) EXPECT_FLOAT_EQ(exp, act) 两个float数值相等
ASSERT_DOUBLE_EQ(exp, act) EXPECT_DOUBLE_EQ(exp, act) 两个double数值相等
ASSERT_NEAR(val1, val2, abs_err) EXPECT_NEAR(val1, val2, abs_err) val1和val2的差距不超过abs_err

异常判断

Fatal Nonfatal 说明
ASSERT_THROW(stmt, exc_type) EXPECT_THROW(stmt, exc_type) stmt抛出了exc_type类型的异常
ASSERT_ANY_THROW(stmt) EXPECT_ANY_THROW(stmt) stmt抛出了任意类型的异常
ASSERT_NO_THROW(stmt) EXPECT_NO_THROW(stmt) stmt没有抛出异常

Test Fixture

在某些情况下,我们可能希望多条测试case使用相同的测试数据。例如,我们的演示项目中,每条case都会需要创建Utility对象。

有些时候,我们要测试的对象可能很大,或者创建的过程非常的慢。这时,如果每条case反复创建这个对象就显得浪费资源和时间了。此时,我们可以使用Test Fixture来共享测试的对象。

要使用Test Fixture我们需要创建一个类继承自Google Test中的::testing::Test

还记得我们前面说过,我们要尽可能的保证每条测试case是互相独立的。但是,当我们在多条case之间共享有状态的对象时,就可能出现问题。

例如,我们要测试的是一个队列数据结构。有的case会向队列中添加数据,有的case会从队列中删除数据。case执行的顺序不同,则会导致Queue中的数据不一样,这就可能会影响case的结果。

为了保证每条case是独立的,我们可以在每条case的执行前后分别完成准备工作和清理工作,例如,准备工作是向队列中添加三个数据,而清理工作是将队列置空。

这两项重复性的工作可以由::testing::Test类中的SetupTearDown两个函数来完成。

我们演示用的Utility类是无状态的,所以不存在这个问题。因此,这里我们仅仅在SetupTearDown两个函数中打印了一句日志。

使用Test Fixture后,我们的代码如下所示:

class UtilityTest : public ::testing::Test {
   

protected:

void SetUp() override {
   
    cout << "SetUp runs before each case." << endl;
}

void TearDown() override {
   
    cout << "TearDown runs after each case." << endl;
}

Utility util;

};

这段代码说明如下:

  1. SetupTearDown两个函数标记了override以确认是重写父类中的方法,这是C++11新增的语法。
  2. 我们的Utility类是无状态的,因此SetupTearDown两个函数中我们仅仅打印日志以便确认。
  3. Utility util设置为protected以便测试代码中可以访问。(从实现上来说,测试case的代码是从这个类继承的子类,当然,这个关系是由Google Test工具完成的)。

要使用这里定义的Test Fixture,测试case的代码需要将开头的TEST变更为TEST_F

这里_F就是Fixture的意思。

使用TEST_F的case的代码结构如下:

TEST_F(TestCaseName, TestName) {
  ... test body ...
}

这里的TestCaseName必须是Test Fixture的类名。

所以我们的测试代码写起来是这样:

TEST_F(UtilityTest, ArithmeticCalculationDouble) {
   
    EXPECT_EQ(util.ArithmeticCalculation(ADD, 1.1, 1.1), 2.2);
}

TEST_F(UtilityTest, ArithmeticCalculationIsLeapYear) {
   
    EXPECT_FALSE(util.IsLeapYear(1997));
    EXPECT_TRUE(util.IsLeapYear(2000));
    EXPECT_TRUE(util.IsLeapYear(2016));
    EXPECT_FALSE(util.IsLeapYear(2100));
}

我们针对ArithmeticCalculation方法故意只进行了一种情况的测试。这是为了最终生成代码覆盖率所用。

运行测试

编写完单元测试之后,再执行编译工作便可以运行测试程序以查看测试结果了。

测试的结果像下面这样:

如果测试中包含了失败的case,则会以红色的形式输出。同时,会看到失败的case所处的源码行数,这样可以很方便的知道哪一个测试失败了,像下面这样:

如果只想有选择性的跑部分case,可以通过--gtest_filter参数进行过滤,这个参数支持*通配符。

像下面这样:

$ ./build/unit_test --gtest_filter=*ArithmeticCalculationInt
Running main() from googletest/src/gtest_main.cc
Note: Google Test filter = *ArithmeticCalculationInt
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from TestCalculationInt
[ RUN      ] TestCalculationInt.ArithmeticCalculationInt
CANNO Divided by 0
[       OK ] TestCalculationInt.ArithmeticCalculationInt (0 ms)
[----------] 1 test from TestCalculationInt (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (0 ms total)
[  PASSED  ] 1 test.

如果想要更好的理解这些内容。请读者下载演示项目之后完成下面这些操作:

  1. utility.hutility.cpp中添加一些新的函数。

  2. 在新添加的函数中故意包含一个bug。

  3. 为新添加的函数编写测试代码,并测试出函数中包含的bug。

代码覆盖率

在进行单元测试之后,我们当然希望能够直观的看到我们的测试都覆盖了哪些代码。

理论上,如果我们能做到100%的覆盖我们的所有代码,则可以说我们的代码是没有Bug的。

但实际上,100%的覆盖率要比想象得困难。对于大型项目来说,能够达到80% ~ 90%的语句覆盖率就已经很不错了。

覆盖率的类型

先来看一下,当我们在说“覆盖率”的时候我们到底是指的什么。

实际上,代码覆盖率有下面几种类型:

  • 函数覆盖率:描述有多少比例的函数经过了测试。
  • 语句覆盖率:描述有多少比例的语句经过了测试。
  • 分支覆盖率:描述有多少比例的分支(例如:if-elsecase语句)经过了测试。
  • 条件覆盖率:描述有多少比例的可能性经过了测试。

这其中,函数覆盖率最为简单,就不做说明了。

语句覆盖率是我们最常用的。因为它很直观的对应到我们写的每一行代码。

而分支覆盖率和条件覆盖率可能不太好理解,需要做一下说明。

以下面这个C语言函数为例:

int foo (int x, int y) {
   
    int z = 0;
    if ((x > 0) && (y > 0)) {
   
        z = x;
    }
    return z;
}

这个函数中包含了一个if语句,因此if语句成立或者不成立构成了两个分支。所以如果只测试了if成立或者不成立的其中之一,其分支覆盖率只有 1/2 = 50%

而条件覆盖率需要考虑每种可能性的情况。

对于if (a && b)这样的语句,其一共有四种可能的情况:

  1. a = true, b = true
  2. a = true, b = false
  3. a = false, b = true
  4. a = false, b = false

请读者思考一下:对于三层if嵌套,每个if语句包含三个布尔变量的代码,如果要做到100%的条件覆盖率,一共要测试多少种情况。

很显示,在编写代码的时候,尽可能的减少代码嵌套,并且简化逻辑运算是一项很好的习惯。

便于测试的代码也是便于理解和维护的,反之则反。

有了这些概念之后,我们就可以看懂测试报告中的覆盖率了。

gcov

gcov是由GCC工具链提供的代码覆盖率生成工具。它可以很方便的和GCC编译器配合使用。

通常情况下,安装好GCC工具链,也就同时包含了gcov命令行工具。

对于代码覆盖率工具所做的工作,可以简单的理解为:标记一次运行过程中,哪些代码被执行过,哪些没有执行。

因此,即便没有测试代码,直接运行编译产物也可以得到代码的覆盖率。只不过,通常情况下这样得到的覆盖率较低罢了。

使用

这里我们以另外一个简单的代码示例来说明gcov的使用。

这段代码如下:

// test.c

#include <stdio.h>

int main (void) {
   

  for (int i = 1; i < 10; i++) {
   
      if (i % 3 == 0)
        printf ("%d is divisible by 3\n", i);
      if (i % 11 == 0)
        printf ("%d is divisible by 11\n", i);
  }

  return 0;
}

这是一个仅仅包含了main函数的c语言代码,main函数的逻辑也很简单。

我们将这段代码保存到文件test.c

要通过gcov生成代码覆盖率。需要在编译时,增加参数--coverage

gcc --coverage test.c

--coverage等同于编译参数-fprofile-arcs -ftest-coverage以及在链接时增加-lgcov

此处的编译结果除了得到可执行文件a.out,还会得到一个test.gcno文件。该文件包含了代码与行号的信息,在生成覆盖率时会需要这个文件。

很显然,带--coverage编译参数得到的编译产物会比不带这个参数要包含更多的信息,因此编译产物会更大。所以这个参数只适合在需要生成代码覆盖率的时候才加上。对于正式发布的编译产物,不应该添加这个编译参数。

当我们执行上面编译出来的可执行文件a.out时,我们还会得到每个源码文件对应的gcda后缀的文件。由test.gcnotest.gcda这两个文件,便可以得到代码的覆盖率结果了。

关于这两个文件的说明请参见这里:Brief description of gcov data files

只需要通过gcov指定源文件的名称(不需要带后缀):gcov test,便可以得到包含覆盖率的结果文件 test.c.gcov了。

回顾一下我们刚刚的操作内容:

$ gcc --coverage test.c
$ ll
total 72
-rwxr-xr-x  1 Paul  staff    26K 11 10 14:41 a.out
-rw-r--r--  1 Paul  staff   240B 11 10 14:41 test.c
-rw-r--r--  1 Paul  staff   720B 11 10 14:41 test.gcno
$ ./a.out 
3 is divisible by 3
6 is divisible by 3
9 is divisible by 3
$ ll
total 80
-rwxr-xr-x  1 Paul  staff    26K 11 10 14:41 a.out
-rw-r--r--  1 Paul  staff   240B 11 10 14:41 test.c
-rw-r--r--  1 Paul  staff   212B 11 10 14:42 test.gcda
-rw-r--r--  1 Paul  staff   720B 11 10 14:41 test.gcno
$ gcov test
File 'test.c'
Lines executed:85.71% of 7
test.c:creating 'test.c.gcov'

$ ll
total 88
-rwxr-xr-x  1 Paul  staff    26K 11 10 14:41 a.out
-rw-r--r--  1 Paul  staff   240B 11 10 14:41 test.c
-rw-r--r--  1 Paul  staff   623B 11 10 14:42 test.c.gcov
-rw-r--r--  1 Paul  staff   212B 11 10 14:42 test.gcda
-rw-r--r--  1 Paul  staff   720B 11 10 14:41 test.gcno

我们可以cat test.c.gcov一下,查看覆盖率的结果:

        -:    0:Source:test.c
        -:    0:Graph:test.gcno
        -:    0:Data:test.gcda
        -:    0:Runs:1
        -:    0:Programs:1
        -:    1:// test.c
        -:    2:
        -:    3:#include <stdio.h>
        -:    4:
        -:    5:int main (void) {
        -:    6:
       20:    7:  for (int i = 1; i < 10; i++) {
        9:    8:      if (i % 3 == 0)
        3:    9:        printf ("%d is divisible by 3\n", i);
        9:   10:      if (i % 11 == 0)
    #####:   11:        printf ("%d is divisible by 11\n", i);
        9:   12:  }
        -:   13:
        1:   14:  return 0;
        -:   15:}

这个结果应该还是很容易理解的,最左边一列描述了代码的覆盖情况:

  • -: 表示该行代码被覆盖了
  • 整数: 表示被执行的次数
  • #####:表示该行没有被覆盖

lcov

gcov得到的结果是本文形式的。但很多时候,我们可能希望得到更加美观和便于浏览的结果。

lcov是gcov工具的图形前端。它收集多个源文件的gcov数据,并生成描述覆盖率的HTML页面。生成的结果中会包含概述页面,以方便浏览。

lcov支持我们前面提到的所有四种覆盖率。

安装

lcov并非包含在GCC中,因此需要单独安装。

  • Mac系统
brew install lcov
  • Ubuntu系统
sudo apt install lcov

使用

对于lcov的使用方法可以通过下面这条命令查询:

lcov --help

通过输出我们可以看到,这个命令的参数有简短(例如-c)和完整(例如--capture)两种形式,其作用是一样的。

这里主要关注的下面这几个参数:

  • -c 或者 --capture 指定从编译产物中收集覆盖率信息。
  • -d DIR 或者 --directory DIR 指定编译产物的路径。
  • -e FILE PATTERN 或者 --extract FILE PATTERN 从指定的文件中根据PATTERN过滤结果。
  • -o FILENAME 或者 --output-file FILENAME 指定覆盖率输出的文件名称。

另外还有需要说明的是:

  • lcov默认不会打开分支覆盖率,因此我们还需要增加这个参数来打开分支覆盖率的计算:--rc lcov_branch_coverage=1
  • lcov输出的仍然是一个中间产物,我们还需要通过lcov软件包提供的另外一个命令genhtml来生成最终需要的html格式的覆盖率报告文件。同样的,为了打开分支覆盖率的计算,我们也要为这个命令增加--rc lcov_branch_coverage=1参数

最后,make_all.sh脚本中包含的相关内容如下:

COVERAGE_FILE=coverage.info
REPORT_FOLDER=coverage_report
lcov --rc lcov_branch_coverage=1 -c -d build -o ${COVERAGE_FILE}_tmp
lcov --rc lcov_branch_coverage=1  -e ${COVERAGE_FILE}_tmp "*src*" -o ${COVERAGE_FILE}
genhtml --rc genhtml_branch_coverage=1 ${COVERAGE_FILE} -o ${REPORT_FOLDER}

这段代码从我们前面编译的结果中收集覆盖率结果,并将结果输出到coverage.info_tmp文件中。但是这里面会包含非项目源码的覆盖率(例如google test),所以我们又通过另外一条命令来指定"src"文件夹进行过滤。最后,通过genhtml得到html格式的报告。

可以通过浏览器查看覆盖率报告的结果,像下面这样:

从这个报告的首页,我们已经可以看到代码的语句覆盖率(Lines),函数覆盖率(Functions)以及分支覆盖率(Branches)。而对于条件覆盖率可以从详细页面中看到。如下图所示:

在上面这张图中,我们可以看到哪些代码被覆盖了,哪些没有。而对于对于if-else之类的语句,也能很清楚的看到条件覆盖率的覆盖情况。例如,对于代码的27行,只覆盖了if成立时的情况,没有覆盖if不成立时的情况。

更进一步

本文中,我们已经完整的完成了从编写单元测试到覆盖率生成的整个过程。

但实际上,对于这项工作我们还可以做得更多一些。例如下面这两项工作:

使用Google Mock

Google Mock是Google Test的扩展,用于编写和使用C++ Mock类。

在面向对象的编程中,Mock对象是模拟对象,它们以预先设定的方式模仿真实对象的行为。程序员通常会创建一个Mock对象来测试某个其他对象的行为,这与汽车设计师使用碰撞测试假人来模拟人类在车辆碰撞中的动态行为的方式非常相似。

关于Google Mock的更多内容请参见:Google Mock的文档

持续集成

对于演示项目的覆盖率报告是通过手动执行脚本文件生成的。

而在实际的项目中,可能同时有很多人在开发同一个项目,每一天项目中都会有很多次的代码提交。我们不可能每次手动的执行编译和生成覆盖率报告结果。这时就可以借助一些持续集成的工具,定时自动地完成项目的编译,测试和覆盖率报告结果的生成工作。

可以在持续集成工具中包含我们编写的脚本,然后将覆盖率报告的html结果发布到某个Web服务器上,最后再以邮件的形式将链接地址发送给大家。

这样就可以很方便的让整个团队看到所有模块的测试结果和覆盖率情况了。

完成了一整套这样的工作,可以非常好的提升整个项目的质量。

参考文献与推荐读物

目录
相关文章
|
4月前
|
C++
C++ 语言异常处理实战:在编程潮流中坚守稳定,开启代码可靠之旅
【8月更文挑战第22天】C++的异常处理机制是确保程序稳定的关键特性。它允许程序在遇到错误时优雅地响应而非直接崩溃。通过`throw`抛出异常,并用`catch`捕获处理,可使程序控制流跳转至错误处理代码。例如,在进行除法运算或文件读取时,若发生除数为零或文件无法打开等错误,则可通过抛出异常并在调用处捕获来妥善处理这些情况。恰当使用异常处理能显著提升程序的健壮性和维护性。
78 2
|
4月前
|
算法 C语言 C++
C++语言学习指南:从新手到高手,一文带你领略系统编程的巅峰技艺!
【8月更文挑战第22天】C++由Bjarne Stroustrup于1985年创立,凭借卓越性能与灵活性,在系统编程、游戏开发等领域占据重要地位。它继承了C语言的高效性,并引入面向对象编程,使代码更模块化易管理。C++支持基本语法如变量声明与控制结构;通过`iostream`库实现输入输出;利用类与对象实现面向对象编程;提供模板增强代码复用性;具备异常处理机制确保程序健壮性;C++11引入现代化特性简化编程;标准模板库(STL)支持高效编程;多线程支持利用多核优势。虽然学习曲线陡峭,但掌握后可开启高性能编程大门。随着新标准如C++20的发展,C++持续演进,提供更多开发可能性。
89 0
|
26天前
|
数据库连接 Go 数据库
Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性
本文探讨了Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性;防御编程则强调在编码时考虑各种错误情况,确保程序健壮性。文章详细介绍了这两种技术在Go语言中的实现方法及其重要性,旨在提升软件质量和可靠性。
27 1
|
1月前
|
测试技术 Go
go语言中测试工具
【10月更文挑战第22天】
29 4
|
2月前
|
算法 C++
2022年第十三届蓝桥杯大赛C/C++语言B组省赛题解
2022年第十三届蓝桥杯大赛C/C++语言B组省赛题解
50 5
|
2月前
|
存储 编译器 C语言
深入计算机语言之C++:类与对象(上)
深入计算机语言之C++:类与对象(上)
|
2月前
|
存储 分布式计算 编译器
深入计算机语言之C++:C到C++的过度-2
深入计算机语言之C++:C到C++的过度-2
|
2月前
|
编译器 Linux C语言
深入计算机语言之C++:C到C++的过度-1
深入计算机语言之C++:C到C++的过度-1
|
3月前
|
JavaScript 前端开发 测试技术
一个google Test文件C++语言案例
这篇文章我们来介绍一下真正的C++语言如何用GTest来实现单元测试。
25 0
|
4月前
|
编译器 C++ 容器
C++语言的基本语法
想掌握一门编程语言,第一步就是需要熟悉基本的环境,然后就是最重要的语法知识。 C++ 程序可以定义为对象的集合,这些对象通过调用彼此的方法进行交互。现在让我们简要地看一下什么是类、对象,方法、即时变量。 对象 - 对象具有状态和行为。例如:一只狗的状态 - 颜色、名称、品种,行为 - 摇动、叫唤、吃。对象是类的实例。 类 - 类可以定义为描述对象行为/状态的模板/蓝图。 方法 - 从基本上说,一个方法表示一种行为。一个类可以包含多个方法。可以在方法中写入逻辑、操作数据以及执行所有的动作。 即时变量 - 每个对象都有其独特的即时变量。对象的状态是由这些即时变量的值创建的。 完整关键字