斯坦福-随机图模型-week2.4_

简介: title: 斯坦福-随机图模型-week2.4tags: notenotebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation---斯坦福-随机图模型-week2.

title: 斯坦福-随机图模型-week2.4
tags: note
notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation
---

斯坦福-随机图模型-week2.4

习题

第 1 个问题

Causal Influence. Consider the CPD below. What is the probability that E=e0 in the following graph, given an observation A=a0,B=b0,C=c1,D=d1? Note that for the pairs of probabilities that make up the leaves, the probability on the left is the probability of e0, and the probability on the right is the probability of e1.

0.6

正确回答 
This is the probability that is reached when following the tree down the appropriate branches.

第 2 个问题

正确

1 / 1 分

2。第 2 个问题

Independencies with Deterministic Functions. In the following Bayesian network, the node B is a deterministic function of its parent A. Which of the following is an independence statement that holds in the network? You may select 1 or more options.

(A⊥B∣C,D)

未选择的是正确的 

(A⊥D∣B)

正确 
Given B, there is no active trail between A and D therefore, they are conditionally independent.

(C⊥D∣B)

正确 
Since B is given and is the only parent of C and of D, C and D are independent.

(B⊥D∣C)

未选择的是正确的 

第 3 个问题

正确

1 / 1 分

3。第 3 个问题

Independencies in Bayesian Networks. For the network in the previous question, let B no longer be a deterministic function of its parent A. Which of the following is an independence statement that holds in the modified Bayesian network? You may select 1 or more options.

(B⊥D∣C)

未选择的是正确的 

(C⊥D∣A)

未选择的是正确的 

(A⊥D∣B)

正确 
The only active trail from A to D passes through B, and there are no V-structures between A and D, so observing B makes A and D independent.

(A⊥D∣C)

未选择的是正确的 

第 4 个问题

正确

1 / 1 分

4。第 4 个问题

Context-Specific Independencies in Bayesian Networks. Which of the following are context-specific independences that do exist in the tree CPD below? (Note: Only consider independencies in this CPD, ignoring other possible paths in the network that are not shown here. You may select 1 or more options.)

(E⊥cC∣b0,d0)

未选择的是正确的 

(E⊥cD∣a0)
未选择的是正确的

(E⊥cD∣b1)

正确 
A variable X is independent of E given conditioning assignments z¯ if all paths consistent with z¯ traversed in the tree CPD reach a leaf without querying X. This is true for this option.

(E⊥cD,B∣a1)

正确 
A variable X is independent of E given conditioning assignments z¯ if all paths consistent with z¯ traversed in the tree CPD reach a leaf without querying X. This is true for this option.
相关文章
斯坦福-随机图模型-week4.2_
title: 斯坦福-随机图模型-week4.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week4.
732 0
斯坦福-随机图模型-week3.2_
title: 斯坦福-随机图模型-week3.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.2 独立马尔科夫网络 分离的概念 分离的概念是这样的,如果我们有这样的定义: 如果再H中没有没有实际的连接线,我们认定Z呗H分离 比如再这个图中,图A和E是被B和C分离的。
831 0
|
决策智能
斯坦福-随机图模型-week4.0_
title: 斯坦福-随机图模型-week4.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week4.0 最大期望收入模型 简答的决策 我们使用随机图模型进行决策需要的原料是什么ne ? 我们需要决策的情景 一些列的可能的行为 一系列的转台量: 还有一个收益函数 期望的收益公式: 期望收益公式表示是这样的,每个行为的可能性,乘以他的期望收益的加权和。
777 0
[8585014]斯坦福-随机图模型-week3.2_
title: 斯坦福-随机图模型-week3.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.2 独立马尔科夫网络 分离的概念 分离的概念是这样的,如果我们有这样的定义: 如果再H中没有没有实际的连接线,我们认定Z呗H分离 比如再这个图中,图A和E是被B和C分离的。
846 0
斯坦福-随机图模型-week3.1_
title: 斯坦福-随机图模型-week3.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
1078 0
|
定位技术
斯坦福-随机图模型-week3.3_
title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
672 0
斯坦福-随机图模型-week3.0_
title: 斯坦福-随机图模型-week3.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.0 马尔科夫网络 pairwise markov networks 成对马尔科夫模型 图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型。
773 0
|
人工智能 BI
斯坦福-随机图模型-week2.2_
title: 斯坦福-随机图模型-week2.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.2 习题 1。
1033 0
|
关系型数据库 BI
斯坦福-随机图模型-week2.1_
title: 斯坦福-随机图模型-week2.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.1 plate model 模板模型 4. Plate 模型   时序模板模型,通常还有一类情况需要模板模型:问题中有多个相同类型的不同对象,希望建立模板对这些对象进行统一考虑。
970 0
斯坦福-随机图模型-week2.3_
title: 斯坦福-随机图模型-week2.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.3 局部结构-总论 tabular representation 表格表示 CPD 条件概率分布 我们以前使用表格来描述各个情况的概率,比如这样: 比如我们讨论学生问题,这个表可以描述智商,难度和得分的关系。
827 0