[8584966]斯坦福-随机图模型-week3.3_

简介: title: 斯坦福-随机图模型-week3.3tags: notenotebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation---斯坦福-随机图模型-week3.

title: 斯坦福-随机图模型-week3.3
tags: note
notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation
---

斯坦福-随机图模型-week3.3

习题

1. Question 1

I-Maps. Graph G (shown below) is a perfect I-map for distribution P, i.e. I(G)=I(P). Which of the other graphs is an I-map (not necessarily a perfect map) for P?

img_13570e8e709736adcb96f7c307b56f8b.jpe

III

Correct 
I isn't because it has the extra independence (A⊥C).

II has the extra independence relation (B⊥C∣D) (among others).

III has no extra independencies. In fact, it has fewer independencies, but the definition of I-map allows for this.

II and III

I

I and II

Question 2

I-Equivalence. In the figure below, graph G is I-equivalent to which other graph(s)?

img_9f021b8d70747d2f28908219e1dd1ba2.jpe

I

Correct 
II, III, and IV all have extra independencies.

III

None of the above

I and III

Question 3

*I-Equivalence. Let Bayesian network G be a simple directed chain X1→X2→...→Xn for some number n. How many Bayesian networks are I-equivalent to G including G itself?

n

Correct 
The chain X1←...←Xi→...→Xn is I-equivalent, where i can be 2 through n (when i=n, all arrows point left). Thus, there are n−1 I-equivalent networks like this. Including the original network makes n.

2n

n−1

n!

相关文章
斯坦福-随机图模型-week4.2_
title: 斯坦福-随机图模型-week4.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week4.
735 0
斯坦福-随机图模型-week3.2_
title: 斯坦福-随机图模型-week3.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.2 独立马尔科夫网络 分离的概念 分离的概念是这样的,如果我们有这样的定义: 如果再H中没有没有实际的连接线,我们认定Z呗H分离 比如再这个图中,图A和E是被B和C分离的。
834 0
|
决策智能
斯坦福-随机图模型-week4.0_
title: 斯坦福-随机图模型-week4.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week4.0 最大期望收入模型 简答的决策 我们使用随机图模型进行决策需要的原料是什么ne ? 我们需要决策的情景 一些列的可能的行为 一系列的转台量: 还有一个收益函数 期望的收益公式: 期望收益公式表示是这样的,每个行为的可能性,乘以他的期望收益的加权和。
779 0
[8585014]斯坦福-随机图模型-week3.2_
title: 斯坦福-随机图模型-week3.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.2 独立马尔科夫网络 分离的概念 分离的概念是这样的,如果我们有这样的定义: 如果再H中没有没有实际的连接线,我们认定Z呗H分离 比如再这个图中,图A和E是被B和C分离的。
846 0
斯坦福-随机图模型-week3.1_
title: 斯坦福-随机图模型-week3.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
1084 0
|
定位技术
斯坦福-随机图模型-week3.3_
title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
676 0
斯坦福-随机图模型-week3.0_
title: 斯坦福-随机图模型-week3.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.0 马尔科夫网络 pairwise markov networks 成对马尔科夫模型 图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型。
776 0
斯坦福-随机图模型-week2.4_
title: 斯坦福-随机图模型-week2.4 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.
1075 0
|
人工智能 BI
斯坦福-随机图模型-week2.2_
title: 斯坦福-随机图模型-week2.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.2 习题 1。
1036 0
斯坦福-随机图模型-week2.3_
title: 斯坦福-随机图模型-week2.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.3 局部结构-总论 tabular representation 表格表示 CPD 条件概率分布 我们以前使用表格来描述各个情况的概率,比如这样: 比如我们讨论学生问题,这个表可以描述智商,难度和得分的关系。
832 0

热门文章

最新文章