斯坦福-随机图模型-week4.2_

简介: title: 斯坦福-随机图模型-week4.2tags: notenotebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation---斯坦福-随机图模型-week4.

title: 斯坦福-随机图模型-week4.2
tags: note
notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation
---

斯坦福-随机图模型-week4.2

练习

1. Question 1

Utility Curves. What does the point marked A on the Y axis correspond to? (Mark all that apply.)

500

Un-selected is correct

U(ℓ) where ℓ is a lottery that pays 0 with probability 0.5 and 1000 with probability 0.5.

Correct 
Yes, this is correct, since the value of the lottery is equivalent to 0.5U(<img src="https://yqfile.alicdn.com/img_4edbf5b1f9cae596f44bc735b3da386e.gif"/>1000).

U(500)
Un-selected is correct

0.5U(0)+0.5U(1000)

Correct 
This is correct, as you can observe from the geometry of the triangles in the figure.

Question 2

Utility Curves. What does the point marked B on the Y axis correspond to? (Mark all that apply.)

0.5U(img_4edbf5b1f9cae596f44bc735b3da386e.gif1000)

Un-selected is correct 

$500

Un-selected is correct 

U(ℓ) where ℓ is a lottery that pays 0 with probability 0.5 and 1000 with probability 0.5.

Un-selected is correct 

U(500)

Correct 
Yes, this is correct, since point B is on the curve, it represents U(500).

Question 3

Expected Utility. In the simple influence diagram on the right, with the CPD for M and the utility function V, what is the expected utility of the action f1?

20

2

Correct 
This is correct. The expected utility is given by 0.5*(-7) + 0.3*5 + 0.2*20 = 2.

0

5

Question 4

*Uninformative Variables. In the influence diagram on the right, what is an appropriate way to have the model account for the fact that if the Test wasn’t performed (t0), then the survey is uninformative?

Set P(S|M,t0) so that S takes some new value “not performed” with probability 1.

Correct 
This is the appropriate action. Assigning S to any other value would not be desirable, as these other values may represent survey results, but we have not actually conducted the survey.

Set P(S|M,t0) so that S takes the value s0 with probability 1.

Set P(S|M,t0) to be uniform.

Set P(S|M,t0)=P(S|M,t1).

相关文章
|
决策智能
斯坦福-随机图模型-week4.0_
title: 斯坦福-随机图模型-week4.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week4.0 最大期望收入模型 简答的决策 我们使用随机图模型进行决策需要的原料是什么ne ? 我们需要决策的情景 一些列的可能的行为 一系列的转台量: 还有一个收益函数 期望的收益公式: 期望收益公式表示是这样的,每个行为的可能性,乘以他的期望收益的加权和。
777 0
[8585014]斯坦福-随机图模型-week3.2_
title: 斯坦福-随机图模型-week3.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.2 独立马尔科夫网络 分离的概念 分离的概念是这样的,如果我们有这样的定义: 如果再H中没有没有实际的连接线,我们认定Z呗H分离 比如再这个图中,图A和E是被B和C分离的。
846 0
斯坦福-随机图模型-week3.2_
title: 斯坦福-随机图模型-week3.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.2 独立马尔科夫网络 分离的概念 分离的概念是这样的,如果我们有这样的定义: 如果再H中没有没有实际的连接线,我们认定Z呗H分离 比如再这个图中,图A和E是被B和C分离的。
831 0
|
定位技术
斯坦福-随机图模型-week3.3_
title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
672 0
|
定位技术
[8584966]斯坦福-随机图模型-week3.3_
title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
869 0
斯坦福-随机图模型-week3.1_
title: 斯坦福-随机图模型-week3.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.
1078 0
斯坦福-随机图模型-week3.0_
title: 斯坦福-随机图模型-week3.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.0 马尔科夫网络 pairwise markov networks 成对马尔科夫模型 图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型。
771 0
|
人工智能 BI
斯坦福-随机图模型-week2.2_
title: 斯坦福-随机图模型-week2.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.2 习题 1。
1033 0
|
关系型数据库 BI
斯坦福-随机图模型-week2.1_
title: 斯坦福-随机图模型-week2.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.1 plate model 模板模型 4. Plate 模型   时序模板模型,通常还有一类情况需要模板模型:问题中有多个相同类型的不同对象,希望建立模板对这些对象进行统一考虑。
970 0
|
机器人 计算机视觉 自然语言处理
斯坦福-随机图模型-week1.0_
title: 斯坦福-随机图模型-week2.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.0 模板模型(Template Models) 在实际的模型的建立的过程中,会出现很多的重复的情况。
968 0