为什么经常说Node.js不适合大型应用

简介:

首先要明确什么是大型应用,其实这是仁者见仁、智者见智的问题,并且它是一个哲学问题,不是一个技术问题。假如有人问你,一个可以进行线上销售的网站,比如优衣库,大不大?你可能会说大,因为这与你平常所见的博客、企业官网等逻辑相比较确实复杂很多。或者说小,那么说明你开发过比它还复杂的系统。那么相比较淘宝而言呢?大和小的对比是要有参照物的。

1. 应用的组成

一个完备的 Web 应用可能只由一门语言或者一种技术构成吗?不可能。因为一个完备的 Web 应用其实是多门技术的综合体,解决某个问题有非常多的解决方案,比如后端的逻辑解决方案就非常多,Java、PHP、Python、Ruby 等都可以。

简单地概述,应用的组成内容可能包括:

  • Web 界面显示逻辑;
  • 后端业务逻辑;
  • 缓存;
  • 数据库;
  • 消息队列。

其实还可以加入日志分析、数据分析等,只是上面几个最广为人知而已。

2. 应用的种类

  • I/O 密集型;
  • CPU 密集型。

就常见的互联网产品而言,它的瓶颈并非在后端业务的逻辑上,而是在 I/O 上,即返回给用户看的数据的读入与输出。相对于应用程序而言,读入指的是从数据库里获取数据,而输出指的是将这些数据经过一定的处理输出到用户的浏览器,那么这就是 I/O 密集型。

而 CPU 密集型是指做频繁计算任务的应用,Node.js 在这方面确实是短板。

3. 应用服务的过程

如图所示,用户通过浏览器发送请求,由网卡接收TCP 连接,通知内核,内核再去调用相对应的服务端程序。

Request 请求过程

为什么经常说Node.js不适合大型应用

Response 返回过程

如下图,Web 应用要返回数据,首先要获取数据,通过内核调用磁盘的驱动程序,把数据读入缓存,这样就可以在 Web 应用程序中获取数据并进行数据处理,最终调用内核,将数据通过网卡发送给客户端。

为什么经常说Node.js不适合大型应用

4. 应用的瓶颈

通常 I/O 密集型的瓶颈会在磁盘的读写上,所以在购买云服务器的时候可以购买 SSD 的磁盘来提升性能,一般数据库软件的数据都是存储在文件上面的。首先考虑添加内存型缓存来解决这个瓶颈,缓存经常访问的数据,看能否解决当前场景的问题,比如使用 Redis。其次才考虑搭建或扩充数据库集群来提高并发。

而 CPU 密集型的应用瓶颈则在 CPU 上,只能增加 CPU 处理核心来解决瓶颈。

5. 分布式应用

大型的普通应用与分布式应用其实是不同的概念。读者可以把分布式应用简单地理解为一个团队,每一个成员都是一个节点,一个大的项目要让成员合作完成,那么成员与成员之间就存在一些沟通成本,甚至有的成员与成员之间勾心斗角,说话阳奉阴违、推脱责任,也有可能成员生病在家休养,无法工作,等等。在面对这些问题的时候,Node.js 的优势并不能很好地显现出来(并非不可以做,只是没有完善的基础设施)。

分布式的真正定义是,在多台不同的服务器中部署不同的服务模块,以进程为基本单位,派发到服务器上,通过远程调用(RPC)通信并协同工作,最终对外提供服务。

相比较 Node.js目前的分布式基础设施,Go 语言的基础设施则完善多了,特别是在 Docker 这个项目上,充分证明了 Go 语言的优势,这也是为什么 Node.js 社区“大牛”TJ Holowaychuk 转向 Go 语言,因为他要开发分布式应用。

其实没必要过分地关心分布式的问题,毕竟 JavaScript 最初只是一个运行在浏览器端的脚本语言而已,JavaScript 不是万能的,为什么一定要把它用在操作系统级别的开发上呢?寻找一个更合适的语言不是更好吗?就像此刻我们选择 JavaScript 构建 Web 应用一样。

6. 多进程的 Node.js

了解了以上的一些知识点,现在读者应该知道,Node.js 跟大型应用关系不大。大多数学习 Node.js 的开发者是前端开发者,所以对后端的基础知识并不了解,在网络上搜寻一些资料的时候发现 Node.js 只能利用单核,而又听说 TJ Holowaychuk 转向 Go 的阵营,所以有的开发者就产生了Node.js不适合开发大型应用的疑问。

Node.js 只能利用单核的问题已经被解决了,后面使用的 Egg.js 框架中的 Egg-Cluster 模块就利用多进程非常好地解决了这个问题。


本文选自《Node.js实战:使用Egg.js+Vue.js+Docker构建渐进式、可持续集成与交付应用》,作者yugo,电子工业出版社9月出版。


了解本书详情:https://u.jd.com/e29Uft

相关文章
|
30天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
231 2
|
1月前
|
JavaScript 前端开发 API
探索后端技术:Node.js的优势和实际应用
【10月更文挑战第6天】 在当今数字化时代,后端开发是任何成功软件应用的关键组成部分。本文将深入探讨一种流行的后端技术——Node.js,通过分析其核心优势和实际应用案例,揭示其在现代软件开发中的重要性和潜力。
118 2
|
16天前
|
数据可视化 JavaScript 前端开发
数据可视化进阶:D3.js在复杂数据可视化中的应用
【10月更文挑战第26天】数据可视化是将数据以图形、图表等形式呈现的过程,帮助我们理解数据和揭示趋势。D3.js(Data-Driven Documents)是一个基于JavaScript的库,使用HTML、SVG和CSS创建动态、交互式的数据可视化。它通过数据驱动文档的方式,将数据与DOM元素关联,提供高度的灵活性和定制性,适用于复杂数据的可视化任务。 示例代码展示了如何使用D3.js创建一个简单的柱状图,展示了其基本用法。D3.js的链式调用和回调函数机制使代码简洁易懂,支持复杂的布局和交互逻辑。
49 3
|
1月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
61 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
21天前
|
JavaScript 前端开发 开发者
探索JavaScript原型链:深入理解与实战应用
【10月更文挑战第21天】探索JavaScript原型链:深入理解与实战应用
26 1
|
1月前
|
JavaScript 前端开发 API
Vue.js:打造高效前端应用的最佳选择
【10月更文挑战第9天】Vue.js:打造高效前端应用的最佳选择
17 2
|
1月前
|
设计模式 JavaScript 前端开发
探索JavaScript中的闭包:从基础概念到实际应用
在本文中,我们将深入探讨JavaScript中的一个重要概念——闭包。闭包是一种强大的编程工具,它允许函数记住并访问其所在作用域的变量,即使该函数在其作用域之外被调用。通过详细解析闭包的定义、创建方法以及实际应用场景,本文旨在帮助读者不仅理解闭包的理论概念,还能在实际开发中灵活运用这一技巧。
|
1月前
|
缓存 JavaScript 前端开发
深入了解JavaScript的闭包:概念与应用
【10月更文挑战第8天】深入了解JavaScript的闭包:概念与应用
|
13天前
|
前端开发 JavaScript
JavaScript新纪元:ES6+特性深度解析与实战应用
【10月更文挑战第29天】本文深入解析ES6+的核心特性,包括箭头函数、模板字符串、解构赋值、Promise、模块化和类等,结合实战应用,展示如何利用这些新特性编写更加高效和优雅的代码。
31 0
|
28天前
|
运维 JavaScript Linux
容器内的Nodejs应用如何获取宿主机的基础信息-系统、内存、cpu、启动时间,以及一个df -h的坑
本文介绍了如何在Docker容器内的Node.js应用中获取宿主机的基础信息,包括系统信息、内存使用情况、磁盘空间和启动时间等。核心思路是将宿主机的根目录挂载到容器,但需注意权限和安全问题。文章还提到了使用`df -P`替代`df -h`以获得一致性输出,避免解析错误。