Bitmap Index Scan

简介: Bitmap Index Scan 数据库里面的表的扫描方式主要是以下几种方式:sequential scans, index scans, and bitmap index scans,当然还有index only scan,这种算是index scans中比较特殊的一种,需要的信息在索引中都能找到,扫描索引即可,不需要去扫描表。

Bitmap Index Scan

数据库里面的表的扫描方式主要是以下几种方式:sequential scans, index scans, and bitmap index scans,当然还有index only scan,这种算是index scans中比较特殊的一种,需要的信息在索引中都能找到,扫描索引即可,不需要去扫描表。

这篇文章主要谈谈Bitmap Index Scan的原理及适用的场景。

定义

A plain indexscan fetches one tuple-pointer at a time from the index,and immediately visits that tuple in the table. A bitmap scan fetches all the tuple-pointers from the index in one go, sorts them using an in-memory "bitmap" data structure, and then visits the table tuples in physical tuple-location order. The bitmap scan improves locality of reference to the table at the cost of more bookkeeping overhead to manage the "bitmap" data structure --- and at the cost that the data is no longer retrieved in index order, which doesn't matter for your query but would matter if you said ORDER BY.

A bitmapped index scan works in two stages. First the index or indexes are scanned to create a bitmap representing matching tuple.

这段解释是tom lane在postgres邮件组中的回答,我觉得是比较权威而且通俗易懂的解释。

核心是传统的index scan每次从索引中去取一个tuple的指针,然后立马去表中取数据,每一次会造成一次随机io。如果数据量较多的情况下,会比较低效。而bitmap scan一次性将符合条件的tuple-pointers全部取出来,然后在内存中进行地址排序,然后去取出数据,这时的读取数据由于进行的地址排序,读取时就变成了顺序的读。其实就是一个随机读转化为顺序读取的过程,但是取出的数据由于进行了地址的排序,就没有顺序。同时,对于limit这种sql,bitmap index scan这种就不适合,因为它一次会取出所有数据。

和传统索引扫描对比:

_2018_10_31_3_39_38

在读取数据量比较小时,index scan比较合适,在读取数据量比较大的情况下,bitmap index scan会更有优势。

下面通过实验验证

建立测试表

创建测试表
CREATE TABLE sampletable (x numeric);

插入数据
INSERT INTO sampletable SELECT random() * 10000 FROM generate_series(1, 10000000);

全表扫描

postgres=# explain (analyze,buffers) select * from sampletable where x = 12;
                                                           QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
 Seq Scan on sampletable  (cost=10000000000.00..10000179055.00 rows=1 width=11) (actual time=1144.790..1144.790 rows=0 loops=1)
   Filter: (x = '12'::numeric)
   Rows Removed by Filter: 10000000
   Buffers: shared hit=54055
 Planning time: 0.190 ms
 Execution time: 1144.811 ms
(6 rows)

从执行计划看到整体的读取page的数量(一般在磁盘中我们叫block,如果数据已经加载至内存我们叫page)是54055。有没有同学会质疑以下这个大小是不是真正的表大小?
我们查看pg_class表:

postgres=# SELECT relpages, reltuples FROM pg_class WHERE relname = 'sampletable';
 relpages | reltuples
----------+-----------
    54055 |     1e+07
postgres=# select pg_relation_size('sampletable')/8/1024;
 ?column?
----------
    54055
(1 row)

上面两种方法都可以计算中实际表的大小。

添加索引

建立索引:
CREATE INDEX  ON sampletable(x);

再来运行语句

postgres=# explain (analyze,buffers) select * from sampletable where x = 12;
                                                             QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
 Index Only Scan using sampletable_x_idx on sampletable  (cost=0.43..8.45 rows=1 width=11) (actual time=0.034..0.034 rows=0 loops=1)
   Index Cond: (x = '12'::numeric)
   Heap Fetches: 0
   Buffers: shared read=3
 Planning time: 0.220 ms
 Execution time: 0.054 ms

由于取的数据比较少,所以不会使用bitmap index scan,这时我们读取一个范围内的数据:

postgres=# explain (analyze,buffers) select * from sampletable where x >0 and x <100;
                                                              QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on sampletable  (cost=2536.93..59167.58 rows=98780 width=11) (actual time=26.456..100.278 rows=99979 loops=1)
   Recheck Cond: ((x > '0'::numeric) AND (x < '100'::numeric))
   Heap Blocks: exact=45642
   Buffers: shared hit=46028
   ->  Bitmap Index Scan on sampletable_x_idx  (cost=0.00..2512.24 rows=98780 width=0) (actual time=19.426..19.426 rows=99979 loops=1)
         Index Cond: ((x > '0'::numeric) AND (x < '100'::numeric))
         Buffers: shared hit=386
 Planning time: 0.172 ms
 Execution time: 105.153 ms

如果我们希望走传统index scan,有两种方法,一种是修改enable_bitmapscan(默认是on),还有一种是修改random_page_cost,后面一种修改随机扫描的cost方法其实就是利用我们前面所讲的原理,让执行计划认为随机扫描的代价很低,虽然实际中并不是这样。

这里我们采用第一种方法:

postgres=# explain (analyze,buffers) select * from sampletable where x >0 and x <100;
                                                                    QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------
 Index Only Scan using sampletable_x_idx on sampletable  (cost=0.43..209968.64 rows=98780 width=11) (actual time=0.033..91.571 rows=99979 loops=1)
   Index Cond: ((x > '0'::numeric) AND (x < '100'::numeric))
   Heap Fetches: 99979
   Buffers: shared hit=100364
 Planning time: 0.095 ms
 Execution time: 96.648 ms

可以看到,两种扫描方式时间其实差不多。我们继续扩大扫描的范围看看效果:

postgres=# explain (analyze,buffers) select * from sampletable where x >0 and x <2000;
                                                                       QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------
 Index Only Scan using sampletable_x_idx on sampletable  (cost=0.43..287155.15 rows=2003705 width=11) (actual time=0.033..1681.522 rows=2000273 loops=1)
   Index Cond: ((x > '0'::numeric) AND (x < '2000'::numeric))
   Heap Fetches: 2000273
   Buffers: shared hit=2007910
 Planning time: 0.105 ms
 Execution time: 1782.037 ms
(6 rows)
postgres=# set enable_bitmapscan = on;
SET
postgres=# explain (analyze,buffers) select * from sampletable where x >0 and x <2000;
                                                                  QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on sampletable  (cost=51402.41..135512.99 rows=2003705 width=11) (actual time=247.258..589.842 rows=2000273 loops=1)
   Recheck Cond: ((x > '0'::numeric) AND (x < '2000'::numeric))
   Heap Blocks: exact=54055
   Buffers: shared hit=61721
   ->  Bitmap Index Scan on sampletable_x_idx  (cost=0.00..50901.49 rows=2003705 width=0) (actual time=238.489..238.489 rows=2000273 loops=1)
         Index Cond: ((x > '0'::numeric) AND (x < '2000'::numeric))
         Buffers: shared hit=7666
 Planning time: 0.109 ms
 Execution time: 677.900 ms

可以看到,当范围扩大0~2000时,bitmap index scan 明显更优。

还有在and or 这种条件下,bitmap index scan 优势也是很明显

postgres=# explain (analyze,buffers) select * from sampletable where x >0 and x <2000 or x >9999;
                                                                     QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on sampletable  (cost=51927.12..141063.23 rows=2004448 width=11) (actual time=257.583..611.480 rows=2001278 loops=1)
   Recheck Cond: (((x > '0'::numeric) AND (x < '2000'::numeric)) OR (x > '9999'::numeric))
   Heap Blocks: exact=54055
   Buffers: shared hit=61728
   ->  BitmapOr  (cost=51927.12..51927.12 rows=2004635 width=0) (actual time=248.819..248.819 rows=0 loops=1)
         Buffers: shared hit=7673
         ->  Bitmap Index Scan on sampletable_x_idx  (cost=0.00..50901.49 rows=2003705 width=0) (actual time=248.723..248.723 rows=2000273 loops=1)
               Index Cond: ((x > '0'::numeric) AND (x < '2000'::numeric))
               Buffers: shared hit=7666
         ->  Bitmap Index Scan on sampletable_x_idx  (cost=0.00..23.41 rows=930 width=0) (actual time=0.093..0.093 rows=1005 loops=1)
               Index Cond: (x > '9999'::numeric)
               Buffers: shared hit=7
 Planning time: 0.236 ms
 Execution time: 699.203 ms
(14 rows)
postgres=# set enable_bitmapscan = off;
SET
postgres=# explain (analyze,buffers) select * from sampletable where x >0 and x <2000 or x >9999;
                                                                       QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------
 Index Only Scan using sampletable_x_idx on sampletable  (cost=0.43..595241.76 rows=2004448 width=11) (actual time=0.016..8253.516 rows=2001278 loops=1)
   Filter: (((x > '0'::numeric) AND (x < '2000'::numeric)) OR (x > '9999'::numeric))
   Rows Removed by Filter: 7998722
   Heap Fetches: 10000000
   Buffers: shared hit=10038131
 Planning time: 0.199 ms
 Execution time: 8346.357 ms
(7 rows)

可以看到bitmap index scan比普通的index scan快了一个数量级,同时我们在执行计划中有bitmapor,通过对两个bitmap做或运算,筛选数据。

其他

不知道同学没有没有注意执行计划中有一个recheck cond的过程,这个意思是在取出的数据比较多时,内存中就不会单独存储每行的指针,而是直接存储对应的page的指针,这种就是有损的(lossy),所以做Bitmap Heap Scan时需要double check一下page中满足条件的行。我们这里的Heap Blocks都是exact,意思是无损的,精确的,其实并不需要recheck的过程,只是这里会显示出来。如果我们遇到了Heap Blocks lossy的情况,可以适当提高work_mem.

参考链接

https://www.postgresql.org/message-id/464F3C5D.2000700@enterprisedb.com
https://paquier.xyz/postgresql-2/postgres-9-4-feature-highlight-lossyexact-pages-for-bitmap-heap-scan/
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

相关文章
|
数据库
SCAN
SCAN
148 0
|
SQL 存储 Oracle
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
3863 0
|
SQL 关系型数据库 索引
|
Oracle 关系型数据库 索引
20180316不使用INDEX FULL SCAN (MIN/MAX)
[20180316]为什么不使用INDEX FULL SCAN (MIN/MAX).txt --//链接:http://www.itpub.net/thread-2100456-1-1.
1193 0