记一次查内存异常问题(续《记一次Web应用CPU偏高》)

简介: 继上一次查应用的CPU飙高问题(http://www.cnblogs.com/hzmark/p/JVM_CPU.html)过去10天了。上次只是定位到了是一个第三方包占用了大量的CPU使用,但没有细致的去查第三方包为什么占用了这么高的CPU,并且内存为什么如此诡异。

继上一次查应用的CPU飙高问题(http://www.cnblogs.com/hzmark/p/JVM_CPU.html)过去10天了。上次只是定位到了是一个第三方包占用了大量的CPU使用,但没有细致的去查第三方包为什么占用了这么高的CPU,并且内存为什么如此诡异。总的来说上一次排查带来的收获是熟悉了JVM的工具使用和大致定位到了问题。

在上次排查问题之后,应用出现异常的频率还是较高,终下定决心再查一次,而这次排查的重点落在内存方面。因为怀疑CPU偏高是因为内存的异常导致频繁的GC引起的。

首先是JVM内存的状态:

S0和S1交替的用满,不停的在进行YGC。

使用jmap可以看到内存中那些对象使用了大量的内存:

下面是列出内存占用的方法(下图不是异常状态的时候的现象):

在异常状态的情况下看到的现象是class name:[B占用好几个G的内存,也就是byte数组占用了很大的内存。

结合上一次查CPU问题时定位到的问题代码:

仔细看出问题的线程:com.trilead.ssh2.StreamGobbler$GobblerThread.run

到这里为止都是通过上次排查CPU问题可以推测出来的,其实仔细一点耐心一点顺着com.trilead.ssh2.StreamGobbler$GobblerThread.run继续往下分析能定位到具体问题,但是到这里之后我才用了另一种方式去定位问题,那就是分析出现问题时的堆内存使用情况,下面是我的分析过程。

首先dump内存数据:

jmap -dump:format=b,file=xxx.bin 3230

其中xxx.bin是dump出来的文件,3230是pid

之后使用mat打开该文件(这边不介绍MAT的使用,可以自己查找帮助文档;我使用的是eclipse的mat插件,可以在官网上找到update的地址在线安装就可以了http://download.eclipse.org/mat/1.3.1/update-site/)

这是一个概览信息,可以看到总共使用了618M内存,而有一块直接占用了576M,那么问题肯定出现在这块内存中。

点到leak suspects会有一个系统分析的怀疑问题:

和上一步我们的猜想是一致的,问题出在最大的这个内存这里。和排查CPU时得出的结论也是一致的,问题出在第三方的包内。

点击detail内容可以看到具体是哪里占用了内存。

通过with outgoing references查看线程引用的对象,如下图所示:

在找到使用内存最大的对象,查找他的引用,可以看到代码中是哪里引用了这块内存导致无法被回收

到这里位置就可以知道是自己起的线程保持了对内存的引用导致无法别回收。查自己写的代码已经可以精确的定位到问题。
(其实根据上次使用到一些JVM的工具已经可以发现问题,但是问了跟精确,顺便学习内存排查,所以有了MAT分析的过程)

下面是定位到问题代码之后的处理。

查看具体的代码:

  1 package com.trilead.ssh2;
  2 
  3 import java.io.IOException;
  4 import java.io.InputStream;
  5 import java.io.InterruptedIOException;
  6 
  7 /**
  8  * A <code>StreamGobbler</code> is an InputStream that uses an internal worker
  9  * thread to constantly consume input from another InputStream. It uses a buffer
 10  * to store the consumed data. The buffer size is automatically adjusted, if needed.
 11  * <p>
 12  * This class is sometimes very convenient - if you wrap a session's STDOUT and STDERR
 13  * InputStreams with instances of this class, then you don't have to bother about
 14  * the shared window of STDOUT and STDERR in the low level SSH-2 protocol,
 15  * since all arriving data will be immediatelly consumed by the worker threads.
 16  * Also, as a side effect, the streams will be buffered (e.g., single byte
 17  * read() operations are faster).
 18  * <p>
 19  * Other SSH for Java libraries include this functionality by default in
 20  * their STDOUT and STDERR InputStream implementations, however, please be aware
 21  * that this approach has also a downside:
 22  * <p>
 23  * If you do not call the StreamGobbler's <code>read()</code> method often enough
 24  * and the peer is constantly sending huge amounts of data, then you will sooner or later
 25  * encounter a low memory situation due to the aggregated data (well, it also depends on the Java heap size).
 26  * Joe Average will like this class anyway - a paranoid programmer would never use such an approach.
 27  * <p>
 28  * The term "StreamGobbler" was taken from an article called "When Runtime.exec() won't",
 29  * see http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html.
 30  * 
 31  * @author Christian Plattner, plattner@trilead.com
 32  * @version $Id: StreamGobbler.java,v 1.1 2007/10/15 12:49:56 cplattne Exp $
 33  */
 34 
 35 public class StreamGobbler extends InputStream
 36 {
 37     class GobblerThread extends Thread
 38     {
 39         public void run()
 40         {
 41             byte[] buff = new byte[8192];
 42 
 43             while (true)
 44             {
 45                 try
 46                 {
 47                     int avail = is.read(buff);
 48 
 49                     synchronized (synchronizer)
 50                     {
 51                         if (avail <= 0)
 52                         {
 53                             isEOF = true;
 54                             synchronizer.notifyAll();
 55                             break;
 56                         }
 57                         
 58                         int space_available = buffer.length - write_pos;
 59                         
 60                         if (space_available < avail)
 61                         {
 62                             /* compact/resize buffer */
 63 
 64                             int unread_size = write_pos - read_pos;
 65                             int need_space = unread_size + avail;
 66 
 67                             byte[] new_buffer = buffer;
 68 
 69                             if (need_space > buffer.length)
 70                             {
 71                                 int inc = need_space / 3;
 72                                 inc = (inc < 256) ? 256 : inc;
 73                                 inc = (inc > 8192) ? 8192 : inc;
 74                                 new_buffer = new byte[need_space + inc];
 75                             }
 76                             
 77                             if (unread_size > 0)
 78                                 System.arraycopy(buffer, read_pos, new_buffer, 0, unread_size);
 79 
 80                             buffer = new_buffer;
 81                             
 82                             read_pos = 0;
 83                             write_pos = unread_size;
 84                         }
 85                         
 86                         System.arraycopy(buff, 0, buffer, write_pos, avail);
 87                         write_pos += avail;
 88 
 89                         synchronizer.notifyAll();
 90                     }    
 91                 }
 92                 catch (IOException e)
 93                 {
 94                     synchronized (synchronizer)
 95                     {
 96                         exception = e;
 97                         synchronizer.notifyAll();
 98                         break;
 99                     }
100                 }
101             }
102         }
103     }
104 
105     private InputStream is;
106     private final GobblerThread t;
107 
108     private final Object synchronizer = new Object();
109 
110     private boolean isEOF = false;
111     private boolean isClosed = false;
112     private IOException exception = null;
113 
114     private byte[] buffer = new byte[2048];
115     private int read_pos = 0;
116     private int write_pos = 0;
117 
118     public StreamGobbler(InputStream is)
119     {
120         this.is = is;
121         t = new GobblerThread();
122         t.setDaemon(true);
123         t.start();
124     }
125 
126     public int read() throws IOException
127     {
128         synchronized (synchronizer)
129         {
130             if (isClosed)
131                 throw new IOException("This StreamGobbler is closed.");
132 
133             while (read_pos == write_pos)
134             {
135                 if (exception != null)
136                     throw exception;
137 
138                 if (isEOF)
139                     return -1;
140 
141                 try
142                 {
143                     synchronizer.wait();
144                 }
145                 catch (InterruptedException e)
146                 {
147                     throw new InterruptedIOException();
148                 }
149             }
150 
151             int b = buffer[read_pos++] & 0xff;
152 
153             return b;
154         }
155     }
156 
157     public int available() throws IOException
158     {
159         synchronized (synchronizer)
160         {
161             if (isClosed)
162                 throw new IOException("This StreamGobbler is closed.");
163 
164             return write_pos - read_pos;
165         }
166     }
167 
168     public int read(byte[] b) throws IOException
169     {
170         return read(b, 0, b.length);
171     }
172 
173     public void close() throws IOException
174     {
175         synchronized (synchronizer)
176         {
177             if (isClosed)
178                 return;
179             isClosed = true;
180             isEOF = true;
181             synchronizer.notifyAll();
182             is.close();
183         }
184     }
185 
186     public int read(byte[] b, int off, int len) throws IOException
187     {
188         if (b == null)
189             throw new NullPointerException();
190 
191         if ((off < 0) || (len < 0) || ((off + len) > b.length) || ((off + len) < 0) || (off > b.length))
192             throw new IndexOutOfBoundsException();
193 
194         if (len == 0)
195             return 0;
196 
197         synchronized (synchronizer)
198         {
199             if (isClosed)
200                 throw new IOException("This StreamGobbler is closed.");
201 
202             while (read_pos == write_pos)
203             {
204                 if (exception != null)
205                     throw exception;
206 
207                 if (isEOF)
208                     return -1;
209 
210                 try
211                 {
212                     synchronizer.wait();
213                 }
214                 catch (InterruptedException e)
215                 {
216                     throw new InterruptedIOException();
217                 }
218             }
219 
220             int avail = write_pos - read_pos;
221 
222             avail = (avail > len) ? len : avail;
223 
224             System.arraycopy(buffer, read_pos, b, off, avail);
225 
226             read_pos += avail;
227 
228             return avail;
229         }
230     }
231 }
View Code

如果使用这个类之前知悉读类的说明信息是可以看明白这个类存在的问题的。当然也可以从源码上看出来,我就是从源码看出问题的,当时花的时间肯定比看说明耗费的时间长。

下面是产生问题的代码:

 1 class GobblerThread extends Thread
 2     {
 3         public void run()
 4         {
 5             byte[] buff = new byte[8192];
 6 
 7             while (true)
 8             {
 9                 try
10                 {
11                     int avail = is.read(buff);
12 
13                     synchronized (synchronizer)
14                     {
15                         if (avail <= 0)
16                         {
17                             isEOF = true;
18                             synchronizer.notifyAll();
19                             break;
20                         }
21                         
22                         int space_available = buffer.length - write_pos;
23                         
24                         if (space_available < avail)
25                         {
26                             /* compact/resize buffer */
27 
28                             int unread_size = write_pos - read_pos;
29                             int need_space = unread_size + avail;
30 
31                             byte[] new_buffer = buffer;
32 
33                             if (need_space > buffer.length)
34                             {
35                                 int inc = need_space / 3;
36                                 inc = (inc < 256) ? 256 : inc;
37                                 inc = (inc > 8192) ? 8192 : inc;
38                                 new_buffer = new byte[need_space + inc];
39                             }
40                             
41                             if (unread_size > 0)
42                                 System.arraycopy(buffer, read_pos, new_buffer, 0, unread_size);
43 
44                             buffer = new_buffer;
45                             
46                             read_pos = 0;
47                             write_pos = unread_size;
48                         }
49                         
50                         System.arraycopy(buff, 0, buffer, write_pos, avail);
51                         write_pos += avail;
52 
53                         synchronizer.notifyAll();
54                     }    
55                 }
56                 catch (IOException e)
57                 {
58                     synchronized (synchronizer)
59                     {
60                         exception = e;
61                         synchronizer.notifyAll();
62                         break;
63                     }
64                 }
65             }
66         }
67     }
View Code

StreamGobbler类的buffer属性是一个只会不断增长,且不会清空的byte数组,问题就出在这里。

当一个Hive查询的执行时间非常的长(比如出现数据倾斜导致查询进行不下去、执行任务很多需要排队导致时间边长),那么这个线程将持续很长时间,而它将hold这个buffer永远不会被回收,虽然它里面的内容再也不会被使用。

那么这就是不合理的地方。StreamGobbler类的设计就是启动一个线程将一个输入流的内容不停的清空,读到自己的缓存中。这样的目的是不要造成流的堵塞,但这样就不适用长任务且日志不停输出的场景。

 

至此排查分析结束,原因就是第三方的StreamGobbler并不适合当前的场景。解决的办法就是自己实现读取流的线程及时的处理掉流中的内容,和StreamGobbler起一个线程去读试一致的,只是不做缓存处理。

 

经过这次CPU飙高查到原因,基本已经熟悉了JVM工具的使用,CPU问题及内存问题的排查流程,算是有些收获。看问题,排查定位问题,看源码分析,最终解决掉问题的过程让自己非常的“爽”,并且得到成长。

 

和各位博友一起成长,加油。

 

 

 

 

 

 

 

 

如果本文对您有帮助,点一下右下角的“推荐”
目录
相关文章
|
3天前
|
SQL 缓存 搜索推荐
后端技术在现代Web开发中的应用与挑战
本文将深入探讨后端技术在现代Web开发中的重要性,涵盖从基础架构到性能优化的多个方面。通过分析当前主流后端技术的优缺点,并提供一些实用的解决方案和建议,帮助开发者更好地应对日常开发中的挑战。
15 1
|
8天前
|
人工智能 关系型数据库 数据安全/隐私保护
后端技术在现代Web开发中的应用与挑战
本文将深入探讨后端技术在现代Web开发中的重要性,通过分析其在数据处理、业务逻辑实现和安全性保障方面的应用,揭示后端技术的核心价值。同时,本文还将讨论当前后端开发面临的主要挑战,如高并发处理、数据安全、微服务架构的复杂性等,并给出相应的解决方案。无论是后端开发者还是对后端技术感兴趣的读者,都可以通过这篇文章获得启发和指导。
|
16天前
|
前端开发 安全 JavaScript
构建高效Web应用:前后端分离架构的实践
【9月更文挑战第4天】在数字时代,Web应用已成为企业与用户互动的主要平台。本文将介绍如何通过前后端分离的架构设计来构建高效的Web应用,探讨该架构的优势,并分享实现过程中的关键步骤和注意事项。文章旨在为开发者提供一种清晰、高效的开发模式,帮助其在快速变化的市场环境中保持竞争力。
|
20天前
|
中间件 编译器 数据处理
在web开发中应用管道过滤器
【9月更文挑战第1天】本文介绍管道-过滤器架构将数据处理流程分解为一系列独立组件,通过管道连接,适用于数据流处理如图像处理、编译器设计等。通过具体实例说明了Gin如何有效支持管道-过滤器风格的设计,构建高性能Web服务。
33 9
|
7天前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
19 0
|
18天前
|
Java C++
Java内存区域于内存溢出异常
这篇文章详细解释了Java虚拟机的内存区域划分、各区域的作用以及可能遇到的内存溢出异常情况。
29 0
|
20天前
|
Rust 安全 开发者
惊爆!Xamarin 携手机器学习,开启智能应用新纪元,个性化体验与跨平台优势完美融合大揭秘!
【8月更文挑战第31天】随着互联网的发展,Web应用对性能和安全性要求不断提高。Rust凭借卓越的性能、内存安全及丰富生态,成为构建高性能Web服务器的理想选择。本文通过一个简单示例,展示如何使用Rust和Actix-web框架搭建基本Web服务器,从创建项目到运行服务器全程指导,帮助读者领略Rust在Web后端开发中的强大能力。通过实践,读者可以体验到Rust在性能和安全性方面的优势,以及其在Web开发领域的巨大潜力。
29 0
|
20天前
|
开发者 Java 前端开发
Struts 2验证框架:如何让数据校验成为Web开发的隐形守护者?揭秘前后端一致性的秘诀
【8月更文挑战第31天】在现代Web开发中,数据验证对确保应用健壮性和良好用户体验至关重要。随着前后端分离架构的普及,保证数据校验一致性尤为关键。Struts 2 验证框架基于 JavaBean 验证 API(JSR 303/JSR 380),允许开发者通过注解或 XML 配置轻松定义验证规则,确保输入数据在执行业务逻辑前已通过验证。此外,Struts 2 支持与前端 JavaScript 验证相结合,确保前后端数据校验一致,提升用户体验。通过注解、XML 配置和资源文件,开发者可以轻松定义和调整验证规则,实现前后端一致的数据校验,提高应用健壮性。
28 0
|
20天前
|
Java 缓存 数据库连接
揭秘!Struts 2性能翻倍的秘诀:不可思议的优化技巧大公开
【8月更文挑战第31天】《Struts 2性能优化技巧》介绍了提升Struts 2 Web应用响应速度的关键策略,包括减少配置开销、优化Action处理、合理使用拦截器、精简标签库使用、改进数据访问方式、利用缓存机制以及浏览器与网络层面的优化。通过实施这些技巧,如懒加载配置、异步请求处理、高效数据库连接管理和启用GZIP压缩等,可显著提高应用性能,为用户提供更快的体验。性能优化需根据实际场景持续调整。
44 0

热门文章

最新文章