sklearn调包侠之线性回归

简介: 线性回归原理如图所示,这是一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的直线穿过这些散点(这些点离拟合直线很近)。
img_745f3c3f47200dd2ea7987ae88e25fec.png

线性回归原理

如图所示,这是一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的直线穿过这些散点(这些点离拟合直线很近)。

img_f9d60858152aef8453ffcfdc4dc3992e.png
目标函数(成本函数)

要使这些点离拟合直线很近,我们需要用数学公式来表示:

img_25d94181bc646e8869b5dc8fd2e7c20b.png
梯度下降法

之前在讲解回归时,是通过求导获取最小值,但必须满足数据可逆,这里通常情况下使用梯度下降法,也就是按着斜率方向偏移。详细可看这篇文章(https://www.jianshu.com/p/96566542b07a)。
tips:这篇文章讲解了梯度上升法,梯度下降法类似。

img_934720a23364477c7220565869d167ac.png

实战——房价预测

数据导入

该数据使用sklearn自带的数据集,通过sklearn.datasets导入我们的boston房价数据集。

from sklearn.datasets import load_boston
boston = load_boston()

通过DESCR属性可以查看数据集的详细情况,这里数据有14列,前13列为特征数据,最后一列为标签数据。

print(boston.DESCR)
img_70621c004595a63115e30471f7dfa485.png

boston的data和target分别存储了特征和标签:

img_937d430fd46f23dc29022b1cfbd77bcd.png
切分数据集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size = 0.2, random_state=2)
数据预处理

普通的线性回归模型太简单,容易导致欠拟合,我们可以增加特征多项式来让线性回归模型更好地拟合数据。在sklearn中,通过preprocessing模块中的PolynomialFeatures来增加特征多项式。
其重要参数有:

  • degree:多项式特征的个数,默认为2
  • include_bias:默认为True,包含一个偏置列,也就是 用作线性模型中的截距项,这里选择False,因为在线性回归中,可以设置是否需要截距项。
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2,include_bias=False)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.fit_transform(X_test)
模型训练与评估

线性算法使用sklearn.linear_model 模块中的LinearRegression方法。常用的参数如下:

  • fit_intercept:默认为True,是否计算截距项。
  • normalize:默认为False,是否对数据归一化。

简单线性回归

from sklearn.linear_model import LinearRegression

model2 = LinearRegression(normalize=True)
model2.fit(X_train, y_train)
model2.score(X_test, y_test)

# result
# 0.77872098747725804

多项式线性回归

model3 = LinearRegression(normalize=True)
model3.fit(X_train_poly, y_train)
model3.score(X_test_poly, y_test)

# result
# 0.895848854203947
总结

多项式的个数的不断增加,可以在训练集上有很好的效果,但缺很容易造成过拟合,没法在测试集上有很好的效果,也就是常说的:模型泛化能力差。

相关文章
|
5月前
|
数据采集 机器学习/深度学习 算法
Python实现多元线性回归模型(statsmodels OLS算法)项目实战
Python实现多元线性回归模型(statsmodels OLS算法)项目实战
|
7月前
|
机器学习/深度学习 Python
python实现判别分析
python实现判别分析
85 1
|
7月前
|
机器学习/深度学习
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
7月前
|
机器学习/深度学习 数据可视化
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享
|
7月前
|
机器学习/深度学习 搜索推荐 算法
降维·预测·救命:PCA、随机森林与乳腺癌
降维·预测·救命:PCA、随机森林与乳腺癌
114 1
|
7月前
|
机器学习/深度学习 Python
Python利用随机森林对泰坦尼克号乘客生还进行预测实战(超详细 附源码)
Python利用随机森林对泰坦尼克号乘客生还进行预测实战(超详细 附源码)
208 1
|
机器学习/深度学习 决策智能 计算机视觉
基于SVM的时间序列预测-python实现(附源码)
基于SVM的时间序列预测-python实现(附源码)
313 0
|
机器学习/深度学习 算法 Python
Python实战|用决策树实现NBA获胜球队预测
Python实战|用决策树实现NBA获胜球队预测
|
Python
二次判别分析(QDA)和Python实现
二次判别分析(QDA)和Python实现
259 0
二次判别分析(QDA)和Python实现
|
机器学习/深度学习 Python
使用Python实现线性回归
使用Python实现线性回归
142 0
使用Python实现线性回归