Kaggle 教程系列:机器学习模型是如何工作的?

简介: Kaggle公司是由联合创始人兼首席执行官AnthonyGoldbloom2010年在墨尔本创立的,主要是为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台,Notebook主要支持Python和R。

Kaggle公司是由联合创始人兼首席执行官AnthonyGoldbloom2010年在墨尔本创立的,主要是为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台,Notebook主要支持Python和R。

就我个人来说,我非常喜欢这个平台,它不仅提供了大量的数据集和教程供我们学习,还为每人免费配备了一定的CPU、内存和磁盘资源,并且在交互界面上也非常的赏心悦目。

反观国内的几大平台,PAI需要购买计算资源,存储资源,DC一没有在线分析的资源,提交结果还需要实名认证更是反人类的设定;DC学院提供的课程9.9到699不等,并显得杂乱无章。

介绍

本文来自于Kaggle的官方教程翻译,由于图片不便于翻译,故需要读者略懂一些英文术语。

本文将介绍一个机器学习的模型是如何工作,以及如何使用它们来为我们服务,如果您已经具备这些知识,请跳过本文。

本次课程,我们将一起构建以下场景的模型:

您的堂兄花了数百万投资房地产;他您是所有亲戚里面的数据科学方面的专家,他希望与你一起合作,由他提供资金,而您需要预测各种房屋价格,为他的投资提供建议和决策。

通过餐桌上的交流,堂兄表示以前一直是靠直觉在预测房地产的价值,但睿智的你通过观察发现真相只有一个:他有一套通过旧房地产的价值数据预测新房价的潜在模型,只不过他自己没有意识到。

这就与机器学习的工作方式相似了,我们将从一个名为“决策树”的模型开始,虽然有更高级的模型可以提供更为准确的预测,但决策树相对简单、更容易理解,它是数据科学中一些优秀模型的基础结构。

简单决策树

下图是一颗倒过来的树,嗯,你可以伸出手指,比出剪刀手,然后翻过来,它表示通过一个决定,将产生两种结果。

img_c8cae410b291e87cf361ba9ea028aa4c.png
简单决策树

它将房屋分为两类,而房屋的预测目标则是同一类型房屋的历史平均价。

模型训练

我们使用历史数据来决定如何对房屋进行分类,然后再确定每一类的价格。这一步我们称为拟合或训练模型,用于拟合模型的数据称为训练数据。在代码中通常以train表示,而用于训练的变量为X_train,目标变量为Y_train

模型训练的步骤比较复杂,我们通常是调用现有的科学计算库来完成,并在训练完成后保存它。

数据预测

根据上一步得到训练好的模型,我们将需要预测的新房数据输入,通过模型预测出新房的目标价格。

改进决策树

通过对历史数据的预测,我们的决策树将如何进行选择?

img_d7702bafddd4355fe9f66e520df603f6.png
问题?

当然,只要不傻,我们肯定是选择左侧的树(谁说要选右侧的,请给我来10套这样的房子),因为现实是拥有更多房间的房子更贵。

但是,只通过房间数量来标定一个房价太过儿戏,我们买房通常还要考虑交通、房龄、位置、环境等因素。

这时候,我们要增加树的深度,以进行更多条件的判断:

img_bc8b997b1af5cab7bb43d8b1cf78c4af.png
两层决策数

上面这个树,在房间的基础上增加了对面积的判断,通过训练数据的特征,逐级选择相应的路径,最后达到底部的叶子节点,即是我们需要的预测结果。

原文链接

https://www.kaggle.com/dansbecker/how-models-work

PS: 打开此链接需要一些技术手段

相关文章
|
1月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
16天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
65 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
25天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
45 12
|
1月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
55 8
|
1月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
55 6
|
1月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
43 0