使用face_recognition批量识别图片中的人数

简介: #使用face_recognition实现从图片中选中人数并分别输出txtimport face_recognitionimport cv2import osfin = 'D:\\Users\\a\\Pictures\\test_pho'# 读取图片并识别人脸for file in os.
#使用face_recognition实现从图片中选中人数并分别输出txt




import
face_recognition import cv2 import os fin = 'D:\\Users\\a\\Pictures\\test_pho' # 读取图片并识别人脸 for file in os.listdir(fin): file_fullname = fin + '/' + file img = face_recognition.load_image_file(file_fullname) face_locations = face_recognition.face_locations(img) print(face_locations) faceNum = len(face_locations) print(faceNum) num = str(faceNum) file_object = open(file_fullname+'.txt', 'w') file_object.write(num+ '个人') file_object.close() # 调用opencv函数显示图片 # img = cv2.imread("D:\\Users\\a\\Pictures\\test_pho\\3.jpg") # cv2.namedWindow("pre_pho") # cv2.imshow("pre_pho", img) #遍历每个人脸,并标注 # faceNum = len(face_locations) # print(faceNum) for i in range(0, faceNum): top = face_locations[i][0] right = face_locations[i][1] bottom = face_locations[i][2] left = face_locations[i][3] start = (left, top) end = (right, bottom) color = (55, 255, 155) thickness = 3 cv2.rectangle(img, start, end, color, thickness) # 显示识别结果 # cv2.namedWindow("rec_pho") # cv2.imshow("rec_pho", img) cv2.waitKey(0) cv2.destroyAllWindows()

目录
相关文章
|
5月前
|
文字识别 对象存储
视觉智能开放平台操作报错合集之人脸活体检测功能上传了Tasks,但是还是提示Missing Tasks,是为什么
在使用视觉智能开放平台时,可能会遇到各种错误和问题。虽然具体的错误代码和消息会因平台而异,但以下是一些常见错误类型及其可能的原因和解决策略的概述,包括但不限于:1. 认证错误、2. 请求参数错误、3. 资源超限、4. 图像质量问题、5. 服务不可用、6. 模型不支持的场景、7. 网络连接问题,这有助于快速定位和解决问题。
|
机器学习/深度学习 计算机视觉
图像排名(Image Ranking
机器学习中的图像排名(Image Ranking)是一种基于图像特征的学习方法,它主要用于根据图像的相似度或重要性对图像进行排序。图像排名在很多应用场景中都有用
132 2
|
人工智能 算法 人机交互
基于内容的图像检索系统 课设总结分析 01 Image retrieval Pipeline
基于内容的图像检索系统 课设总结分析 01 Image retrieval Pipeline
162 0
基于内容的图像检索系统 课设总结分析 01 Image retrieval Pipeline
|
iOS开发
iOS MachineLearning 系列(7)—— 图片相似度分析
图片相似度分析是Vision框架中提供的高级功能。其本质是计算图片的特征值,通过特征值的比较来计算出图片特征差距,从而可以获取到图片的相似程度。在实际应用中,图片的相似度分析有着广泛的应用。如人脸对比识别,相似物品的搜索和识别等。
465 0
|
机器学习/深度学习 编解码 数据可视化
Text to image论文精读 从菜谱描述自动生成菜肴照片 CookGAN: Causality based Text-to-Image Synthesis(基于因果关系的文本图像合成 )
文章被2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)会议录用。 论文地址:[https://ieeexplore.ieee.org/document/9157040/citations#citations](https://ieeexplore.ieee.org/document/9157040/citations#citations) CookGAN旨在解决因果关系效应。食物图像的因果演化隐含在一个连续的网络中。 本博客是精读这篇论文的报告,包含一些个人理解、知识拓展和总结。
Text to image论文精读 从菜谱描述自动生成菜肴照片 CookGAN: Causality based Text-to-Image Synthesis(基于因果关系的文本图像合成 )
|
机器学习/深度学习 自然语言处理 算法
Text to Image 文本生成图像定量评价指标分析笔记 Metric Value总结 IS、FID、R-prec等
Text to Image 文本生成图像定量评价指标分析笔记 Metric Value总结 IS、FID、R-prec等
Text to Image 文本生成图像定量评价指标分析笔记 Metric Value总结 IS、FID、R-prec等
在 IMDB 电影评论数据集上进行文本数据漂移检测(Seldon Alibi Detect)(4)
我们使用最大均值差异(MMD)和 Kolmogorov-Smirnov (K-S) 检测器检测文本数据的漂移。 在这个示例中,我们将专注于检测协变量漂移Δp(x)\Delta p(x)Δp(x), 因为检测预测的标签分布漂移与其他方式没有区别(在 CIFAR-10 上检查 K-S 和 MMD 漂移)。
|
自然语言处理 PyTorch TensorFlow
在 IMDB 电影评论数据集上进行文本数据漂移检测(Seldon Alibi Detect)(1)
我们使用最大均值差异(MMD)和 Kolmogorov-Smirnov (K-S) 检测器检测文本数据的漂移。 在这个示例中,我们将专注于检测协变量漂移Δp(x)\Delta p(x)Δp(x), 因为检测预测的标签分布漂移与其他方式没有区别(在 CIFAR-10 上检查 K-S 和 MMD 漂移)。
|
机器学习/深度学习 PyTorch TensorFlow
在 IMDB 电影评论数据集上进行文本数据漂移检测(Seldon Alibi Detect)(3)
我们使用最大均值差异(MMD)和 Kolmogorov-Smirnov (K-S) 检测器检测文本数据的漂移。 在这个示例中,我们将专注于检测协变量漂移Δp(x)\Delta p(x)Δp(x), 因为检测预测的标签分布漂移与其他方式没有区别(在 CIFAR-10 上检查 K-S 和 MMD 漂移)。
|
TensorFlow 算法框架/工具
在 IMDB 电影评论数据集上进行文本数据漂移检测(Seldon Alibi Detect)(2)
我们使用最大均值差异(MMD)和 Kolmogorov-Smirnov (K-S) 检测器检测文本数据的漂移。 在这个示例中,我们将专注于检测协变量漂移Δp(x)\Delta p(x)Δp(x), 因为检测预测的标签分布漂移与其他方式没有区别(在 CIFAR-10 上检查 K-S 和 MMD 漂移)。