应对Memcached缓存失效,导致高并发查询DB的几种思路

简介: 最近看到nginx的合并回源,这个和下面的思路有点像。不过nginx的思路还是在控制缓存失效时的并发请求,而不是当缓存快要失效时,及时地更新缓存。

最近看到nginx的合并回源,这个和下面的思路有点像。不过nginx的思路还是在控制缓存失效时的并发请求,而不是当缓存快要失效时,及时地更新缓存。

nginx合并回源,参考:http://blog.csdn.net/brainkick/article/details/8570698

update: 2015-04-23

======================

当Memcached缓存失效时,容易出现高并发的查询DB,导致DB压力骤然上升。

这篇blog主要是探讨如何在缓存将要失效时,及时地更新缓存,而不是如何在缓存失效之后,如何防止高并发的DB查询。

个人认为,当缓存将要失效时,及时地把新的数据刷到memcached里,这个是解决缓存失效瞬间高并发查DB的最好方法。那么如何及时地知道缓存将要失效?

解决这个问题有几种思路:

比如一个key是aaa,失效时间是30s。


1.定期从DB里查询数据,再刷到memcached里

这种方法有个缺点是,有些业务的key可能是变化的,不确定的。

而且不好界定哪些数据是应该查询出来放到缓存中的,难以区分冷热数据。


2.当缓存取到为null时,加锁去查询DB,只允许一个线程去查询DB

这种方式不太靠谱,不多讨论。而且如果是多个web服务器的话,还是有可能有并发的操作。


3.在向memcached写入value时,同时写入当前机器在时间作为过期时间

当get得到数据时,如果当前时间 - 过期时间 > 5s,则后台启动一个任务去查询DB,更新缓存。

当然,这里的后台任务必须保证同一个key,只有一个线程在执行查询DB的任务,不然这个还是高并发查询DB。

缺点是要把过期时间和value合在一起序列化,取出数据后,还要反序列化。很不方便。


网上大部分文章提到的都是前面两种方式,有少数文章提到第3种方式。下面提出一种基于两个key的方法:

4.两个key,一个key用来存放数据,另一个用来标记失效时间

比如key是aaa,设置失效时间为30s,则另一个key为expire_aaa,失效时间为25s。

在取数据时,用multiget,同时取出aaa和expire_aaa,如果expire_aaa的value == null,则后台启动一个任务去查询DB,更新缓存。和上面类似。


对于后台启动一个任务去查询DB,更新缓存,要保证一个key只有一个线程在执行,这个如何实现?

对于同一个进程,简单加锁即可。拿到锁的就去更新DB,没拿到锁的直接返回。


对于集群式的部署的,如何实现只允许一个任务执行?

这里就要用到memcached的add命令了。

add命令是如果不存在key,则设置成功,返回true,如果已存在key,则不存储,返回false。

当get expired_aaa是null时,则add expired_aaa 过期时间由自己灵活处理。比如设置为3秒。

如果成功了,再去查询DB,查到数据后,再set expired_aaa为25秒。set aaa 为30秒。

综上所述,来梳理下流程:

比如一个key是aaa,失效时间是30s。查询DB在1s内。

  • put数据时,设置aaa过期时间30s,设置expire_aaa过期时间25s;
  • get数据时,multiget  aaa 和 expire_aaa,如果expired_aaa对应的value != null,则直接返回aaa对应的数据给用户。如果expire_aaa返回value == null,则后台启动一个任务,尝试add expire_aaa,并设置超时过间为3s。这里设置为3s是为了防止后台任务失败或者阻塞,如果这个任务执行失败,那么3秒后,如果有另外的用户访问,那么可以再次尝试查询DB。如果add执行成功,则查询DB,再更新aaa的缓存,并设置expire_aaa的超时时间为25s。

5. 时间存到Value里,再结合add命令来保证只有一个线程去刷新数据

update:2014-06-29

最近重新思考了下这个问题。发现第4种两个key的办法比较耗memcached的内存,因为key数翻倍了。结合第3种方式,重新设计了下,思路如下:

  • 仍然使用两个key的方案:

    key

    __load_{key}

其中,__load_{key} 这个key相当于一个锁,只允许add成功的线程去更新数据,而这个key的超时时间是比较短的,不会一直占用memcached的内存

  • 在set 到Memcached的value中,加上一个时间,(time, value),time是memcached上的key未来会过期的时间,并不是当前系统时间。
  • 当get到数据时,检查时间是否快要超时: time - now < 5 * 1000,假定设置了快要超时的时间是5秒。

 * 如果是,则后台启动一个新的线程:
 *     尝试 add __load_{key},
 *     如果成功,则去加载新的数据,并set到memcached中。

 *  原来的线程直接返回value给调用者。

按上面的思路,用xmemcached封装了下:

DataLoader,用户要实现的加载数据的回调接口:

public interface DataLoader {
	public <T> T load();
}
RefreshCacheManager,用户只需要关心这这两个接口函数:

public class RefreshCacheManager {
	static public <T> T tryGet(MemcachedClient memcachedClient, final String key, final int expire, final DataLoader dataLoader);
	static public <T> T autoRetryGet(MemcachedClient memcachedClient, final String key, final int expire, final DataLoader dataLoader);
}
其中autoRetryGet函数如果get到是null,内部会自动重试4次,每次间隔500ms。

RefreshCacheManager内部自动处理数据快过期,重新刷新到memcached的逻辑。

详细的封装代码在这里:https://gist.github.com/hengyunabc/cc57478bfcb4cd0553c2


总结:

我个人是倾向于第5种方式的,因为很简单,直观。比第4种方式要节省内存,而且不用mget,在使用memcached集群时不用担心出麻烦事。

这种两个key的方式,还有一个好处,就是数据是自然冷热适应的。如果是冷数据,30秒都没有人访问,那么数据会过期。

如果是热门数据,一直有大流量访问,那么数据就是一直热的,而且数据一直不会过期。


相关文章
|
3月前
|
存储 缓存 索引
从底层数据结构和CPU缓存两方面剖析LinkedList的查询效率为什么比ArrayList低
本文详细对比了ArrayList和LinkedList的查询效率,从底层数据结构和CPU缓存两个方面进行分析。ArrayList基于动态数组,支持随机访问,查询时间复杂度为O(1),且CPU缓存对其友好;而LinkedList基于双向链表,需要逐个节点遍历,查询时间复杂度为O(n),且CPU缓存对其帮助不大。文章还探讨了CPU缓存对数组增删操作的影响,指出缓存主要作用于读取而非修改。通过这些分析,加深了对这两种数据结构的理解。
53 2
|
5月前
|
存储 缓存 关系型数据库
查询缓存效果
【8月更文挑战第14天】
40 2
|
6月前
|
存储 缓存 算法
深入了解Memcached:缓存技术的利器
Memcached是一个开源的高性能分布式内存缓存系统,用于加速动态Web应用。它通过将数据库查询结果、API调用结果或其他数据缓存到内存中,减少对数据库的访问频率,从而提高应用的响应速度。本文详细介绍了Memcached的基本原理、架构、安装配置、使用方法、测试方法以及应用场景。通过Memcached,开发者可以有效提升Web应用的性能,减少数据库负载,改善用户体验。
76 5
|
5月前
|
存储 缓存 NoSQL
微服务复杂查询之缓存策略
微服务复杂查询之缓存策略
|
5月前
|
存储 缓存 关系型数据库
Django后端架构开发:缓存机制,接口缓存、文件缓存、数据库缓存与Memcached缓存
Django后端架构开发:缓存机制,接口缓存、文件缓存、数据库缓存与Memcached缓存
94 0
|
5月前
|
缓存 关系型数据库 MySQL
【缓存大对决】Memcached VS MySQL查询缓存,谁才是真正的性能之王?
【8月更文挑战第24天】在现代Web应用中,缓存技术对于提升性能与响应速度至关重要。本文对比分析了Memcached与MySQL查询缓存这两种常用方案。Memcached是一款高性能分布式内存对象缓存系统,支持跨服务器共享缓存,具备灵活性与容错性,但受限于内存大小且不支持数据持久化。MySQL查询缓存内置在MySQL服务器中,简化了缓存管理,特别适用于重复查询,但功能较为单一且扩展性有限。两者各有所长,实际应用中可根据需求单独或结合使用,实现最佳性能优化。
168 0
|
5月前
|
缓存 Java 数据库连接
Hibernate 中的查询缓存是什么?
【8月更文挑战第21天】
47 0
|
5月前
|
缓存 数据库 SQL
查询缓存 面试准备
【8月更文挑战第13天】
37 0
|
7月前
|
缓存 NoSQL Java
Redis系列学习文章分享---第四篇(Redis快速入门之Java客户端--商户查询缓存+更新+双写一致+穿透+雪崩+击穿+工具封装)
Redis系列学习文章分享---第四篇(Redis快速入门之Java客户端--商户查询缓存+更新+双写一致+穿透+雪崩+击穿+工具封装)
79 0
|
16天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
158 85