浅谈前端响应式设计(一)

简介:

现实世界有很多是以响应式的方式运作的,例如我们会在收到他人的提问,然后做出响应,给出相应的回答。在开发过程中笔者也应用了大量的响应式设计,积累了一些经验,希望能抛砖引玉。

响应式编程(Reactive Programming)和普通的编程思路的主要区别在于,响应式以推(push)的方式运作,而非响应式的编程思路以拉(pull)的方式运作。例如,事件就是一个很常见的响应式编程,我们通常会这么做:



button.on('click', () => {
    // ...
})

而非响应式方式下,就会变成这样:



while (true) {
    if (button.clicked) {
        // ...
    }
}

显然,无论是代码的优雅度还是执行效率上,非响应式的方式都不如响应式的设计。

Event Emitter

Event Emitter是大多数人都很熟悉的事件实现,它很简单也很实用,我们可以利用Event Emitter实现简单的响应式设计,例如下面这个异步搜索:


class Input extends Component {
    state = {
        value: ''
    }

    onChange = e => {
        this.props.events.emit('onChange', e.target.value)
    }

    afterChange = value => {
        this.setState({
            value
        })
    }

    componentDidMount() {
        this.props.events.on('onChange', this.afterChange)
    }

    componentWillUnmount() {
        this.props.events.off('onChange', this.afterChange)
    }

    render() {
        const { value } = this.state

        return (
            <input value={value} onChange={this.onChange} />
        )
    }
}

class Search extends Component {
    doSearch = (value) => {
        ajax(/* ... */).then(list => this.setState({
            list
        }))
    }

    componentDidMount() {
        this.props.events.on('onChange', this.doSearch)
    }

    componentWillUnmount() {
        this.props.events.off('onChange', this.doSearch)
    }

    render() {
        const { list } = this.state

        return (
            <ul>
                {list.map(item => <li key={item.id}>{item.value}</li>)}
            </ul>
        )
    }
}

这里我们会发现用 Event Emitter 的实现有很多缺点,需要我们手动在 componentWillUnmount 里进行资源的释放。它的表达能力不足,例如我们在搜索时需要聚合多个数据源的时候:


class Search extends Component {
    foo = ''
    bar = ''

    doSearch = () => {
        ajax({
            foo,
            bar
        }).then(list => this.setState({
            list
        }))
    }

    fooChange = value => {
        this.foo = value
        this.doSearch()
    }

    barChange = value => {
        this.bar = value
        this.doSearch()
    }

    componentDidMount() {
        this.props.events.on('fooChange', this.fooChange)
        this.props.events.on('barChange', this.barChange)
    }

    componentWillUnmount() {
        this.props.events.off('fooChange', this.fooChange)
        this.props.events.off('barChange', this.barChange)
    }

    render() {
        // ...
    }
}

显然开发效率很低。

Redux

Redux采用了一个事件流的方式实现响应式,在Redux中由于reducer必须是纯函数,因此要实现响应式的方式只有订阅中或者是在中间件中。

如果通过订阅store的方式,由于Redux不能准确拿到哪一个数据放生了变化,因此只能通过脏检查的方式。例如:



function createWatcher(mapState, callback) {
    let previousValue = null
    return (store) => {
        store.subscribe(() => {
            const value = mapState(store.getState())
            if (value !== previousValue) {
                callback(value)
            }
            previousValue = value
        })
    }
}

const watcher = createWatcher(state => {
    // ...
}, () => {
    // ...
})

watcher(store)

这个方法有两个缺点,一是在数据很复杂且数据量比较大的时候会有效率上的问题;二是,如果mapState函数依赖上下文的话,就很难办了。在react-redux中,connect函数中mapStateToProps的第二个参数是props,可以通过上层组件传入props来获得需要的上下文,但是这样监听者就变成了React的组件,会随着组件的挂载和卸载被创建和销毁,如果我们希望这个响应式和组件无关的话就有问题了。

另一种方式就是在中间件中监听数据变化。得益于Redux的设计,我们通过监听特定的事件(Action)就可以得到对应的数据变化。


const search = () => (dispatch, getState) => {
    // ...
}

const middleware = ({ dispatch }) => next => action => {
    switch action.type {
        case 'FOO_CHANGE':
        case 'BAR_CHANGE': {
            const nextState = next(action)
            // 在本次dispatch完成以后再去进行新的dispatch
            setTimeout(() => dispatch(search()), 0)
            return nextState
        }
        default:
            return next(action)
    }
}

这个方法能解决大多数的问题,但是在Redux中,中间件和reducer实际上隐式订阅了所有的事件(Action),这显然是有些不合理的,虽然在没有性能问题的前提下是完全可以接受的。

面向对象的响应式

ECMASCRIPT 5.1引入了gettersetter,我们可以通过gettersetter实现一种响应式。


class Model {
    _foo = ''

    get foo() {
        return this._foo
    }

    set foo(value) {
        this._foo = value
        this.search()
    }

    search() {
        // ...
    }
}

// 当然如果没有getter和setter的话也可以通过这种方式实现
class Model {
    foo = ''

    getFoo() {
        return this.foo
    }

    setFoo(value) {
        this.foo = value
        this.search()
    }

    search() {
        // ...
    }
}


MobxVue就使用了这样的方式实现响应式。当然,如果不考虑兼容性的话我们还可以使用Proxy

当我们需要响应若干个值然后得到一个新值的话,在Mobx中我们可以这么做:


class Model {
    @observable hour = '00'
    @observable minute = '00'
    
    @computed get time() {
        return `${this.hour}:${this.minute}`
    }
}

Mobx会在运行时收集time依赖了哪些值,并在这些值发生改变(触发setter)的时候重新计算time的值,显然要比EventEmitter的做法方便高效得多,相对Reduxmiddleware更直观。

但是这里也有一个缺点,基于gettercomputed属性只能描述y = f(x)的情形,但是现实中很多情况f是一个异步函数,那么就会变成y = await f(x),对于这种情形getter就无法描述了。

对于这种情形,我们可以通过Mobx提供的autorun来实现:


class Model {
    @observable keyword = ''
    @observable searchResult = []

    constructor() {
        autorun(() => {
            // ajax ...
        })
    }
}

由于运行时的依赖收集过程完全是隐式的,这里经常会遇到一个问题就是收集到意外的依赖:


class Model {
    @observable loading = false
    @observable keyword = ''
    @observable searchResult = []

    constructor() {
        autorun(() => {
            if (this.loading) {
                return
            }
            // ajax ...
        })
    }
}

显然这里 loading 不应该被搜索的 autorun 收集到,为了处理这个问题就会多出一些额外的代码,而多余的代码容易带来犯错的机会。 或者,我们也可以手动指定需要的字段,但是这种方式就不得不多出一些额外的操作:


class Model {
    @observable loading = false
    @observable keyword = ''
    @observable searchResult = []

    disposers = []

    fetch = () => {
        // ...
    }

    dispose() {
        this.disposers.forEach(disposer => disposer())
    }

    constructor() {
        this.disposers.push(
            observe(this, 'loading', this.fetch),
            observe(this, 'keyword', this.fetch)
        )
    }
}

class FooComponent extends Component {
    this.mode = new Model()

    componentWillUnmount() {
        this.state.model.dispose()
    }

    // ...
}

而当我们需要对时间轴做一些描述时,Mobx就有些力不从心了,例如需要延迟5秒再进行搜索。

在下一篇博客中,将介绍Observable处理异步事件的实践。



原文发布时间为:2018年06月25日
原文作者: 有赞前端
本文来源:  掘金  如需转载请联系原作者



相关文章
|
6月前
|
编解码 前端开发 开发者
【Flutter前端技术开发专栏】Flutter中的响应式设计与自适应布局
【4月更文挑战第30天】Flutter框架助力移动应用实现响应式设计与自适应布局,通过层次化布局系统和`Widget`树管理,结合`BoxConstraints`定义尺寸范围,实现自适应。利用`MediaQuery`获取设备信息,调整布局以适应不同屏幕。`FractionallySizedBox`按比例设定尺寸,`LayoutBuilder`动态计算布局。借助这些工具,开发者能创建跨屏幕尺寸、方向兼容的应用,提升用户体验。
159 0
【Flutter前端技术开发专栏】Flutter中的响应式设计与自适应布局
|
6月前
|
编解码 前端开发 开发者
现代前端开发中的响应式设计原理与实践
传统的网页设计通过固定的布局方式难以适应不同设备的屏幕尺寸,而响应式设计则能够使网页在各种终端上都能良好呈现。本文将深入探讨现代前端开发中响应式设计的原理和实践,帮助开发者更好地理解和应用响应式设计技术。
|
4天前
|
编解码 前端开发 UED
深度揭秘:前端工程师如何玩转响应式设计,打造完美用户体验!
随着移动互联网的普及,响应式设计(RWD)成为前端开发的重要技术,旨在使网站适应不同设备的屏幕尺寸。本文介绍响应式设计的核心概念,如流式布局、弹性图片和CSS3媒体查询,并探讨如何利用这些技术及框架(如Bootstrap)构建美观实用的网站,同时关注性能优化、可访问性和SEO。
14 3
|
8天前
|
机器学习/深度学习 编解码 前端开发
探索无界:前端开发中的响应式设计深度解析####
【10月更文挑战第29天】 在当今数字化时代,用户体验的优化已成为网站与应用成功的关键。本文旨在深入探讨响应式设计的核心理念、技术实现及最佳实践,揭示其如何颠覆传统布局限制,实现跨设备无缝对接,从而提升用户满意度和访问量。通过剖析响应式设计的精髓,我们将一同见证其在现代Web开发中的重要地位与未来趋势。 ####
34 7
|
10天前
|
编解码 前端开发 UED
探索无界:前端开发中的响应式设计深度解析与实践####
【10月更文挑战第29天】 本文深入探讨了响应式设计的核心理念,即通过灵活的布局、媒体查询及弹性图片等技术手段,使网站能够在不同设备上提供一致且优质的用户体验。不同于传统摘要概述,本文将以一次具体项目实践为引,逐步剖析响应式设计的关键技术点,分享实战经验与避坑指南,旨在为前端开发者提供一套实用的响应式设计方法论。 ####
35 4
|
5月前
|
前端开发 UED 开发者
现代前端开发中的响应式设计原理与实践
本文探讨了现代前端开发中响应式设计的重要性及其实现原理。通过分析媒体查询、弹性网格布局以及视口单位等技术手段,揭示了如何通过这些工具实现页面在不同设备上的优雅适配。最后,结合实际案例展示了响应式设计在提升用户体验和网站性能方面的应用。
|
7天前
|
编解码 前端开发 UED
前端开发中的响应式设计实践
前端开发中的响应式设计实践
19 0
|
1月前
|
前端开发 容器
前端技术分享:利用CSS Grid布局实现响应式设计
【10月更文挑战第1天】前端技术分享:利用CSS Grid布局实现响应式设计
|
1月前
|
前端开发 JavaScript Go
前端开发趋势:从响应式设计到Web组件的探索
【10月更文挑战第1天】前端开发趋势:从响应式设计到Web组件的探索
38 3
|
4月前
|
前端开发 JavaScript 开发者
现代前端开发中的响应式设计实践与挑战
随着移动设备的普及,现代前端开发越来越注重响应式设计。本文探讨了响应式设计的实践方法和面临的挑战,从布局策略到性能优化,帮助开发者更好地应对多设备环境下的需求。