DeepMind给人工智能搞了一套IQ测试题

简介: 但是,神经网络的智能到底是有推理能力,还是仅靠肤浅的统计数据?为了回答这个问题,DeepMind想了一个方法。给AI搞了一套IQ测试题。

阿基米德在泡澡的时候,发现了富力原理,也发现了如何计算王冠的体积。

这就是一种抽象推理能力。

对于智能你来说,这个能力是不可或缺的一环。对人工智能也不例外。但是,神经网络的智能到底是有推理能力,还是仅靠肤浅的统计数据?

为了回答这个问题,DeepMind想了一个方法。

给AI搞了一套IQ测试题。

例如,下面这个问题:请问右下角应该是哪个图案?

image


基于观察、推理能力,一个智能体可以推断出这个问题的答案。基于这样的理念,DeepMind构建了一个问题生成器,涉及一组抽象因素,包括渐进之类的关系,以及颜色和大小等属性。

虽然这个生成器使用了一组潜在因素,但仍然会产生大量独特的问题。

接下来,通过约束生成器可用的因子或组合,就可以创建用于训练和测试模型的不同问题集,看看模型究竟能“聪明”到什么程度。

image


image

通过实验,DeepMind发现,当模型在测试中能够正确推断出任务背后的抽象概念时,就能产生良好的性能表现——IQ测试正确率可达87%,否则的话,蒙对答案的概率只有32%。

这份研究结果表明,想得出关于泛化的普遍结论可能是无益的。

参与测试的模型,表现良好与否取决于一系列因素,而几乎在所有情况下,系统在需要推断超出其经验的输入,或处理完全不熟悉的属性时,表现不佳。

总之,这是一个很有意思的方向。

很多人在看到这个研究时,都发出了Interesting的评价~

如果你对这个研究感兴趣,详细的论文在此:

Measuring abstract reasoning in neural networks

传送门:

http://proceedings.mlr.press/v80/santoro18a/santoro18a.pdf

image


为了鼓励大家继续研究,DeepMind还开源了数据集。

传送门:

https://github.com/deepmind/abstract-reasoning-matrices

原文发布时间为:2018-07-12
本文来自云栖社区合作伙伴“量子位”,了解相关信息可以关注“量子位”。

相关文章
|
3月前
|
人工智能 算法 测试技术
软件测试中的人工智能革命
本文深入探讨了人工智能在软件测试中的应用,揭示了这一技术革新如何改变传统的测试流程。通过分析人工智能技术的优势、具体应用案例以及面临的挑战,文章展示了AI如何提高测试效率、减少人为错误,并预测其在未来软件测试中的趋势。此外,文章还提出了针对当前挑战的解决策略,为软件测试行业的从业者提供了宝贵的参考和启示。
43 4
|
7月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能,应该如何测试?(六)推荐系统拆解
该文介绍了推荐系统的基本概念和实现思路。推荐系统通过预处理筛选候选集合,然后利用二分类模型预测用户对内容的喜好概率,再按概率排序选择Top N内容推荐给用户。文中提供了一个使用Spark ML库的简单模型训练DEMO,涉及数据预处理、特征工程和逻辑回归模型。此外,还提及了词向量在处理文本特征中的重要性,它能捕捉词与词之间的关联性。推荐系统的实际应用远比示例复杂,但这个例子有助于理解其核心流程。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:现状与未来展望
【10月更文挑战第2天】 本文深入探讨了人工智能在软件测试领域的应用现状、面临的挑战以及未来的发展方向。通过分析AI技术如何提高测试效率、准确性和自动化水平,文章揭示了AI在改变传统软件测试模式中的关键作用。同时,指出了当前AI测试工具的局限性,并对未来AI与软件测试深度融合的前景进行了展望,强调了技术创新对于提升软件质量的重要性。
68 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能:提升效率与准确性的新途径
在当今快速发展的技术领域,人工智能(AI)正成为软件测试的重要工具。本文将探讨AI在软件测试中的应用,如何通过智能化手段提高测试的效率和准确性。从自动化测试到缺陷预测,我们将深入了解AI如何改变传统的软件测试方式,为软件开发流程带来革命性的变化。
|
2月前
|
机器学习/深度学习 人工智能 监控
软件测试中的人工智能革命
本文探讨了人工智能在软件测试中的应用及其带来的变革。通过分析AI如何提高测试效率、准确性,并减少人工干预,本文揭示了软件测试领域的未来趋势。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:效率与准确性的双重提升
随着人工智能技术的不断进步,软件测试领域正经历着前所未有的变革。本文将探讨人工智能在软件测试中的应用及其对效率和准确性的提升。我们将分析传统软件测试的局限性,展示AI如何通过自动化测试、智能缺陷识别和预测性维护来克服这些挑战。此外,我们还将讨论AI在测试过程中面临的伦理和安全挑战,以及如何应对这些挑战。通过综合分析,本文旨在为读者提供一个关于软件测试中人工智能应用的全面视角,强调其在提高效率和准确性方面的巨大潜力。
67 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:挑战与机遇
在本文中,我们将深入探讨人工智能(AI)如何改变软件测试领域的基本面貌。从自动化测试的崭新可能性到提高测试效率和准确性的先进方法,我们将全面分析AI带来的各种挑战和机遇。通过具体案例和实践指南,希望为读者提供清晰的理解和应用方向。
51 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:提升测试效率与质量的新篇章
随着人工智能技术的不断成熟,其在软件测试领域的应用正逐渐改变传统测试方式。本文将探讨AI在软件测试中的应用现状、优势以及面临的挑战,并通过具体案例分析展示AI如何提高测试效率和质量。最后,我们将讨论未来AI在软件测试中的发展趋势及其对人类测试工程师角色的影响。
236 4
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命
本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷检测和测试用例生成。通过实际案例分析,展示了AI如何提高测试效率和准确性,并讨论了未来发展趋势。
42 9
|
3月前
|
人工智能 算法 测试技术
软件测试中的人工智能:提升测试效率与质量
随着软件开发的快速发展,传统的手工测试方法已经无法满足现代软件项目的需求。本文探讨了人工智能在软件测试中的应用,如何通过自动化测试、智能缺陷分析和测试用例生成等技术,提高测试效率和质量。我们将详细介绍这些技术的原理和实际应用,并讨论其带来的优势和挑战。
152 4
下一篇
DataWorks