统计学中抽样调查和一些常用的方法

简介: 抽样调查的领域涉及如何用有效的方式得到样本。这些调查都利用了问卷,而问卷的设计则很有学问。它设计如何用词、问题的次序和问题的选择与组合等等。涉及包括心理学、社会学等知识。问题的语言应该和被调查者的文化水平相适应。

抽样调查的领域涉及如何用有效的方式得到样本。这些调查都利用了问卷,而问卷的设计则很有学问。它设计如何用词、问题的次序和问题的选择与组合等等。涉及包括心理学、社会学等知识。问题的语言应该和被调查者的文化水平相适应。那么抽样调查的设计的目的之一是确保样本对总体的代表性,以保证后续推断的可靠性。然而每个个体可能的简单随机抽样是一个理想情况。

概率抽样方法 假定每个个体出现在样本中的概率是已知的。这种概率相抽样方法使得数据能够进行合理的统计推断。

非概率抽样方法 对从非概率抽样得到的数据进行推断,它依赖于具体的抽样方案是如何设计的,也依赖于它是如何实施的。

 

那么概率抽样方法有哪些呢:

1、系统抽样  也成为每N个名字选择方法(n-th name selection technique),这是先把总体中的每个单元编号,然后随机选取其中之一作为抽样的开始点进行抽样。根据预定的样本量决定"距离"→N,在选取开始点之后,通常从开始点开始按照编号进行所谓等距抽样。 比如 起始点为5,"距离" N = 10,则下面的抽查对象为15号、25号等等。如果编号是随机选取的,则这和简单随机抽样就是等价的了。

 

2、分层抽样 是简单随机抽样的一个变种,先把要研究的总体分成相对相似或相对齐次的个体组成的类,再在各类中分别抽取简单随机样本。然后把从各类中得到的结果汇总,并对总体进行判断。这里在每类中调查的人数通常是按照该类人的比例,但出于各种考虑,也可能不按照比例,也可能需要加权。(加权的概念:在求若干项的和时,对各项乘以不同的系数,这些系数的和通常为1)

 

3、整群抽样  是先把总体划分成若干群,和分层抽样不同之处在于,这里的群是由不相似或异类的个体组成的,在单级整群抽样中,先(通常是随机的)从这些群中抽取几群,然后再在这些抽取的群中对个体进行全面调查。在两极整群抽样中,先(通常是随机地)从这些群中抽取几个群,然后再在这些抽取的群中对个体做简单随机抽样。适用于区域抽样,比如对某县的各个村子进行调查,显然这些村子的情况差异不大,否则就会增大误差。主要应用在于区域抽样,群是以区域进行划分的。

 

4、多级抽样  在群体很大时,往往在抽取若干群之后,再在其中抽取若干子群,甚至再在子群中抽取子群,等等。 这个在每一级都可能再采用不同的抽样方法,所以比较复杂,也称为多级混合型抽样。

 

非概率抽样方法有哪些呢:

1、目的抽样  由研究人员主观地选择对象。那么样本多少依赖于与预先就有的知识。

 

2、方便抽样  通常用于初期的评估。比如,为了调查游客的意见,可能选择不同的时间和旅游景点,随意对愿意停下的游客进行调查。这看起来可能是随机的,其实并不是。

 

3、判断抽样  凭经验来判断选择样本,通常是方便抽样的延伸。这种比如 研究各县的情况,而研究人员仅在一个县中抽样,那么这个县就具有代表性。

 

4、定额抽样  先是确定各类及比例(与分层抽样类似),然后利用方便抽样或判断抽样来按比例选取需要的个体数。

 

5、雪球抽样  用于感兴趣的样本特征较稀有的情况,比如吸毒者,你想调查一个和吸毒者有关的人,然后这个人就会介绍你找到相关的人,可能会产生较大误差。 依赖于一个目标推荐另一个目标的方法。

 

6、自我选择  是让个体自愿参加调查。

 

总的来说,科学的数据抽样方法很多,但是往往是各种抽样方法的组合,因为既要考虑精度又要考虑方便性、可行性等。

 

目录
相关文章
|
7月前
|
知识图谱
【数理统计实验(五)】回归分析
【数理统计实验(五)】回归分析
【数理统计实验(五)】回归分析
|
7月前
|
机器学习/深度学习 人工智能 数据挖掘
【机器学习】贝叶斯统计中,“先验概率”和“后验概率”的区别?
【5月更文挑战第11天】【机器学习】贝叶斯统计中,“先验概率”和“后验概率”的区别?
|
7月前
回归分析与相关分析的区别和联系
回归分析与相关分析的区别和联系
|
存储 BI
概率论和统计学中重要的分布函数
概率论和统计学中重要的分布函数
251 0
概率论和统计学中重要的分布函数
初识统计学——贝叶斯统计
在数据少的情况下也可以进行推测,数据越多,推测结果越准确”,以及“对所获的信息可做出瞬时反应,自动升级推测”的学习功能 但与此同时,“贝叶斯统计在某种程度上是不可靠的”。究其原因,是由于贝叶斯统计中所涉及的概率是“主观的”,但这也是它便利性的本质体现。
80 1
|
机器学习/深度学习
机器学习数学基础八:假设检验
一个公司要来招聘了,本来实际有200个人准备混一 -混, 但是公司希望只有5%的人是浑水摸鱼进来的,所以可能会有200*0.05=4个人混进来,所谓显著性水平a,就是你允许最多有多大比例浑水摸鱼的通过你的测试。
467 0
机器学习数学基础八:假设检验
应用统计学与R语言实现学习笔记(六)——假设检验
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ESA_DSQ/article/details/71420125 Chapter 6 Hypothesis Test 本篇是第6章,内容是假设检验。
1367 0
|
机器学习/深度学习 数据可视化 大数据
可曾听闻【大话】二字—统计学R语言
# 我为什么要写这篇 > 我们都知道,21世纪是数据科学的时代,而统计学则是数据科学的基础,任正非在一档访谈节目中也着重谈到了统计学在大数据时代的重要性。大数据不能被直接拿来使用,统计学依然是数据分析的灵魂。 ![image-20220608170829223](C:\Users\萧\AppData\Roaming\Typora\typora-user-images\image-20220608170829223.png) # 总论 全章概览图 ![image-20220608170918361](C:\Users\萧\AppData\Roaming\Typora\typora-u
323 0
|
机器学习/深度学习
贝叶斯线性回归|机器学习推导系列(二十三)
贝叶斯线性回归|机器学习推导系列(二十三)
350 0
贝叶斯线性回归|机器学习推导系列(二十三)
统计学(一)
分位数 使用QUARTILE函数算出 第一分位数:25%分位数 第二分位数:中位数 第三分位数:75%分位数 知识在于点滴积累
676 0