统计学中抽样调查和一些常用的方法

简介: 抽样调查的领域涉及如何用有效的方式得到样本。这些调查都利用了问卷,而问卷的设计则很有学问。它设计如何用词、问题的次序和问题的选择与组合等等。涉及包括心理学、社会学等知识。问题的语言应该和被调查者的文化水平相适应。

抽样调查的领域涉及如何用有效的方式得到样本。这些调查都利用了问卷,而问卷的设计则很有学问。它设计如何用词、问题的次序和问题的选择与组合等等。涉及包括心理学、社会学等知识。问题的语言应该和被调查者的文化水平相适应。那么抽样调查的设计的目的之一是确保样本对总体的代表性,以保证后续推断的可靠性。然而每个个体可能的简单随机抽样是一个理想情况。

概率抽样方法 假定每个个体出现在样本中的概率是已知的。这种概率相抽样方法使得数据能够进行合理的统计推断。

非概率抽样方法 对从非概率抽样得到的数据进行推断,它依赖于具体的抽样方案是如何设计的,也依赖于它是如何实施的。

 

那么概率抽样方法有哪些呢:

1、系统抽样  也成为每N个名字选择方法(n-th name selection technique),这是先把总体中的每个单元编号,然后随机选取其中之一作为抽样的开始点进行抽样。根据预定的样本量决定"距离"→N,在选取开始点之后,通常从开始点开始按照编号进行所谓等距抽样。 比如 起始点为5,"距离" N = 10,则下面的抽查对象为15号、25号等等。如果编号是随机选取的,则这和简单随机抽样就是等价的了。

 

2、分层抽样 是简单随机抽样的一个变种,先把要研究的总体分成相对相似或相对齐次的个体组成的类,再在各类中分别抽取简单随机样本。然后把从各类中得到的结果汇总,并对总体进行判断。这里在每类中调查的人数通常是按照该类人的比例,但出于各种考虑,也可能不按照比例,也可能需要加权。(加权的概念:在求若干项的和时,对各项乘以不同的系数,这些系数的和通常为1)

 

3、整群抽样  是先把总体划分成若干群,和分层抽样不同之处在于,这里的群是由不相似或异类的个体组成的,在单级整群抽样中,先(通常是随机的)从这些群中抽取几群,然后再在这些抽取的群中对个体进行全面调查。在两极整群抽样中,先(通常是随机地)从这些群中抽取几个群,然后再在这些抽取的群中对个体做简单随机抽样。适用于区域抽样,比如对某县的各个村子进行调查,显然这些村子的情况差异不大,否则就会增大误差。主要应用在于区域抽样,群是以区域进行划分的。

 

4、多级抽样  在群体很大时,往往在抽取若干群之后,再在其中抽取若干子群,甚至再在子群中抽取子群,等等。 这个在每一级都可能再采用不同的抽样方法,所以比较复杂,也称为多级混合型抽样。

 

非概率抽样方法有哪些呢:

1、目的抽样  由研究人员主观地选择对象。那么样本多少依赖于与预先就有的知识。

 

2、方便抽样  通常用于初期的评估。比如,为了调查游客的意见,可能选择不同的时间和旅游景点,随意对愿意停下的游客进行调查。这看起来可能是随机的,其实并不是。

 

3、判断抽样  凭经验来判断选择样本,通常是方便抽样的延伸。这种比如 研究各县的情况,而研究人员仅在一个县中抽样,那么这个县就具有代表性。

 

4、定额抽样  先是确定各类及比例(与分层抽样类似),然后利用方便抽样或判断抽样来按比例选取需要的个体数。

 

5、雪球抽样  用于感兴趣的样本特征较稀有的情况,比如吸毒者,你想调查一个和吸毒者有关的人,然后这个人就会介绍你找到相关的人,可能会产生较大误差。 依赖于一个目标推荐另一个目标的方法。

 

6、自我选择  是让个体自愿参加调查。

 

总的来说,科学的数据抽样方法很多,但是往往是各种抽样方法的组合,因为既要考虑精度又要考虑方便性、可行性等。

 

目录
相关文章
|
4天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
282 116
|
19天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
6天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
406 38
Meta SAM3开源:让图像分割,听懂你的话
|
13天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
670 220
|
1天前
|
Windows
dll错误修复 ,可指定下载dll,regsvr32等
dll错误修复 ,可指定下载dll,regsvr32等
132 95
|
11天前
|
人工智能 移动开发 自然语言处理
2025最新HTML静态网页制作工具推荐:10款免费在线生成器小白也能5分钟上手
晓猛团队精选2025年10款真正免费、无需编程的在线HTML建站工具,涵盖AI生成、拖拽编辑、设计稿转代码等多种类型,均支持浏览器直接使用、快速出图与文件导出,特别适合零基础用户快速搭建个人网站、落地页或企业官网。
1659 158
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
912 61