前沿 | MIT自动驾驶技术突破:实现浓雾中物体观测和测距,超人类水平

简介:

开发可见光自主车辆导航系统一直有一个主要障碍:无法应对雾蒙蒙的驾驶条件。

可见光系统比雷达探测系统表现更好,是因为其拥有高分辨率、读取道路标记以及跟踪标记的能力。

麻省理工的科学家们对此做出进一步的改进,开发了一种深度感测成像系统。它可以识别浓雾中的物体,即使是人类视觉无法识别的物体,这种系统同样可以识别。

科学家们使用一个小水箱和一个浸入其中的振动电机进行测试。人类只能探视水下36厘米的深度,而这一系统可以探视57厘米。

据科学家介绍,57厘米距离不是很远,但是研究中所使用的雾浓度确是比人类驾驶员遇到过的都浓密。关键在于系统探视穿透浓雾的表现优于人类,而大多数传统成像系统的表现却更差。能够有一个成像系统可以与人类视觉比肩,这对自动驾驶技术来说是里程碑的成就。

麻省理工学院实验室的研究生Guy Satat说:“我决定接受挑战,开发一个能够看穿实际迷雾的系统。我们现实中所面对的迷雾更加密集,而且会不断地移动和变化,其他系统不具有应对这种现实情况的条件。”

63729618c98424a50ee2f6a9d4fca937eac59c8f

该系统包含一个飞行时间相机,它可以将超短的激光射入场景并测量反射回来的时间。

相机还会计算每56微微秒或万亿分之一秒到达的光粒子或光子的数量。该系统使用这些计算的数量生成直方图,条的高度表示每个时间间隔的光子计数。

然后找到最适合直方图形状的伽玛分布,并简单地从测量的总数中减去相关的光子计数,剩余的是因物理障碍产生的轻微尖峰。

科学家使用一个一米长的雾室测试该系统,通过安装好的有规律的间隔距离标记,对能见度进行粗略的测量。测试系统中还涉及其他物体,如木制雕像、木块、字母剪影,即使是肉眼看不见的物体,系统也能成像。

但是,对能见度的测量有很多方法,例如可以通过不同距离处的雾看到具有不同颜色和纹理的对象。因此,为了评估系统的性能,科学家们使用了一种更为严格的被称为光学深度的指标,该指标描述了穿透雾的光量。

卡内基梅隆大学计算机科学教授Srinivasa Narasimhan说:“坏天气是发展自主驾驶技术的一大障碍。Guy和Ramesh的创新工作是处理可见光和近红外波长方面的进步,这一进步可能很快在汽车上实现。”


原文发布时间为:2018-04-13

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
7月前
|
机器学习/深度学习 算法 决策智能
微美全息开发RPSSC技术在高光谱图像分类领域取得重要突破
随着高光谱遥感技术的发展,对于高光谱图像的更加精准的处理需求逐渐增加。在农业、环境监测、资源管理等领域,对高光谱图像进行准确分类是实现智能决策和资源优化利用的基础。
|
机器学习/深度学习 编解码 人工智能
有望取代Deepfake?揭秘今年最火的NeRF技术有多牛
有望取代Deepfake?揭秘今年最火的NeRF技术有多牛
438 0
|
机器学习/深度学习 人工智能 监控
深度学习3D人体姿态估计国内外研究现状及痛点
人体姿态估计是从图像或视频信息中获取人体各个关节部位具体位置的过程,目前已被广泛应用到人机交互、视频监控、虚拟现实等领域。基于彩色图像的人体姿态估计算法容易受到颜色、环境等因素的影响,而深度图像在人体着装、肤色和遮挡等影响下具有较好的鲁棒性,能够更好地适应复杂环境的挑战。
4268 0
|
机器学习/深度学习 人工智能 监控
多目标跟踪算法研究现状
随着科技的发展,多目标跟踪已成为热门的研究课题,是机器视觉领域的一个重要研究方向,在军事和民用领域都有着广泛的应用。多目标跟踪的目的为对多个目标物体进行持续跟踪,期间维持同一目标的标签不变化,同时对每个目标在未来帧中的状态进行预测。
1149 0
|
人工智能 搜索推荐 自动驾驶
计算机视觉将打造中国技术的“胜利者效应”
8月底,2019年中国国际智能产业博览会在山城重庆闭幕。
计算机视觉将打造中国技术的“胜利者效应”
|
人工智能 API
“黑天鹅”,正在改变 AI 落地医疗领域的加速度
AI 阅片的技术,因疫情而提速,但也有可能因为「证」而再次回归常态。
|
算法 自动驾驶
MIT 发明“雾中看车”新成像系统,雾天自动驾驶表现比人类更好
麻省理工学院媒体实验室的研究人员开发了一种新的成像系统,利用SPAD相机和新的算法,可以测量被雾遮挡的物体的距离。在实验中,该系统的表现比人类的视觉更好,这对于自动驾驶汽车来说是一个巨大的突破。
1437 0
下一篇
DataWorks