ART世界探险(3) - ARM 64位CPU的架构快餐教程

简介: 我们从去年开始走入了ARM的64位时代,本文尝试用最少的知识量,让大家对ARM64-v8a有一个印象,希望篇幅控制在能够让大家在上个厕所或等个公交之类的时间看完

ART世界探险(3) - ARM 64位CPU的架构快餐教程

前面我们说过,Dalvik如果没有JIT的话,可以做到架构无关,让Dalvik指令都解释执行。但是ART是AOT,要编译成针对芯片具体的机器指令。
所以,研究Dalvik的时候可以不用太关心目标指令,而我们研究ART必须对目前最流行的微处理器的架构有个基本的了解。
在上一讲我们对于ART从java byte code到ARM64 v8指令的整个流程有了一个大概的了解之后,我们就目前最流行的ARM64位芯片的知识进行一些探索。
我们的目的不是写一个操作系统,所以我们尽可能挑实用的讲。

ARM架构简史

我们用NDK编译一个jni库之后会发现,生成了armeabi,armeabi-v7a,arm64-v8a三个目录。这三个目录,代表了ARM目前最流行的三种架构的指令集。

ARM芯片从1985年诞生以来,经历了主要6次大的架构调整。

  1. ARMv4及之前:只使用32位的ARM指令集。
  2. ARMv4T,在32位ARM指令集的基础上,增加了16位的Thumb指令集。这是第一个被广泛使用的架构,代表芯片ARM7TDMI和ARM9TDMI。
  3. ARMv5TE,增加了DSP操作,饱和算法,ARM和Thumb切换。代表芯片:ARM926EJ-S。
  4. ARM v6,对内存访问的架构有所调整,支持SIMD指令。代表芯片:ARM1136JF-S。这一代Thumb2成为可选项。
  5. ARM v7-A,将v6时可选的Thumb2指令集变成必选项,支持NEON指令。代表芯片Cortex-A8, A9, A15, A17。
  6. ARMv8-A,支持两种架构,64位的AArch64和AArch32。其中,AArch32跟原有的v7-A架构是基本一样的。代表芯片为A57, A53, A73, A72.

我们通常见到的armeabi,实际上对应的是ARM v4T~v6的指令。为了节省空间,我们基本上都编成16位的Thumb指令。armeabi-v7a,对应v7-A架构。arm64-v8a对应ARM v8-A的AArch64指令。

我们习惯上,把ARM v4之前就有的基础的32位ARM指令集称为A32指令集,16位的Thumb指令称为T16指令集,AArch64指令集称为A64指令集。

其中,Thumb/Thumb2和A32指令集是兼容的。Thumb和Thumb2比较节省空间,但是有些A32指令的功能是没有的。
这时候,只要从Thumb状态切换到ARM状态下就好了,执行完A32才有的指令,回去再执行T16指令就好了。
arm_1

但是A64指令是不兼容Thumb的,在这种状态下,只有A64指令这一种指令可以用。

Android所用的ARM芯片简史

在Android刚出来的时候,HTC G1所用的高通MSM7201芯片,基于ARM11,用的是ARM v6指令集。
后来德州仪器的OMAP 3430第一次将Cortex-A系列的第一个架构Cortex-A8,引入现实世界中。开启了ARM v7a的时代。这个时代的代表机型就是Moto Droid/MileStone,开启了第一批百万级的Android手机。
随后,从NVidia的Tegra 2开始,我们进入了A9和双核的时代。Tegra 3使用Cortex-A15,在32位上达到一个高峰。
同时,以MediaTek为代表的中低端厂商开始将低端的Cortex-A7发挥到极致,MT6577是两个A7,MT6589为4个A7,MT6592是8个A7.
进入64位时代的代表芯片,就是Qualcomm的SnapDragon 810芯片,4个Cortex-A57的发热问题困扰了无数厂商去年整整一年。
MediaTek继续发挥低端的威力,升级成64位的Cortex-A53。MT6735芯片4个A53,MT6753芯片8个A53。幸好最近的Helix X25/20开始用A72+A53了,我们总算是在MTK芯片上见到一次大核的身影。

从芯片的广泛性上考虑,我们这个讲座的目标芯片就放在Cortex-A53上。

Cortex-A57和Cortex-A53芯片对比

我们简单列一下A57与A53的对比,大家有个直观印象就好。

  Cortex-A53 Cortex-A57
典型时钟 2GHz, 28nm工艺 1.5~2.5GHz, 20nm工艺
执行顺序 顺序 乱序、投机问题、超标量
核心数 1~4 1~4
峰值整数能力 2.3MIPS/MHz 4.1~4.76MIPS/MHz
浮点单元
半精度
硬件除法
融合乘法累加
流水线 8级 15级+
返回栈条目 4 8
通用中断控制 外部 外部
AMBA接口 64位 AMBA 4/5 128位 AMBA 4/5
L1指令缓存 8K ~ 64KB 48KB
L1数据缓存 8K ~ 64KB 32KB
L2缓存 可选 集成
L2缓存 128K~2M 512K~2M
主TLB 512 1024
uTLB 10 48指令,32数据

对我们理解后续知识有影响的主要有两条:一是Cortex-A53不支持乱序执行,这将影响未来的优化策略;另一个是A53的流水线没有A57深,只有8级。

ARM v8a架构简介

异常等级

ARM v8a引入了异常等级的概念。一共有从EL0到EL3四种异常等级,等级越高,特权越高。我们的应用一般都运行于EL0。操作系统内核运行于EL1,EL2和EL3可以留给安全监控软件和KVM之类的虚拟化软件使用。

AArch64与AArch32

ARM芯片曾经指令集比x86容易学的重要原因是历史包袱少,不需要兼容历史上的指令集。现在ARM 64位芯片也不得不做起兼容自己以前的重任。ARM的做法是将运行状态分成AArch64和AArch32两种状态。AArch64就是我们后面重点学习的64位的指令集的运行态,而AArch32是兼容Arm-v7a的状态,所有Arm-v7a以及更早的软件都可以在这个状态上正常运行。
对于我们应用来讲,EL0是没有权限进行AArch64和AArch32状态切换的,所以我们只能一条道走到黑地用一处状态。这也是我们的A64指令无法切换到A32,T16指令的原因。

寄存器

通用寄存器

在AArch64运行态下,在所有的异常级下,都可以访问31个64位通用寄存器,它们的命名是X0~X30。
这31个64位寄存器也可以通过W0~W30来访问低32位。
读Wn时,不会影响到高32位的值。写Wn时,会将高32位全部清0.

我们来看一段之前看过的例子:

str x0, [sp, #-32]!
str lr, [sp, #24]
str w1, [sp, #40]
str w2, [sp, #44]

str x0是使用第0个64位寄存器。
str w1是只使用第1个64位寄存器的低32位

特殊寄存器

  • 零寄存器:XZR/WZR,写该寄存器会被忽略,读该寄存器会得到全0值。
  • PC:程序指针寄存器,64位。注意,还是叫PC,不叫XPC啊!在ARMv7之前,PC可以做为R15,当成通用寄存器来使用,在ARMv8上,不允许直接访问。
  • SP:栈寄存器,64位。对应的32位为WSP,但是64位的这个就叫SP不叫XSP啊!SP是每个EL对应一个(反正咱们只有EL0这个)。
  • ELR(Exception Link Register):异常链接寄存器,EL1~EL3各有一个。存储了从中断返回的地址,这个咱们应用没权限用,本系列中学不到
  • SPSR:(Saved Processor State):EL1~EL3各有一个。保存了发生异常时的状态信息,这个咱们也用不着。

状态域

在AArch64运行态下,没有对应CPSR(Current Program Status Register)的寄存器。每种状态现在需要分别访问。

这些状态有:

  • N – 负数
  • Z – 0
  • C – 进位
  • V – 溢出
  • D – 调试位
  • A – Serror
  • I – IRQ
  • F – FIQ
  • SS – 软件单步跟踪
  • IL – 无效运行态
  • EL – Exception Level
  • nRW – 执行态,0为64位,1为32位
  • SP – 栈指针选择,0为EL0,n为ELn。

N, Z, C, V四种状态是可以在EL0级别被访问的,其它的都需要EL1以上级别。所以,咱们写应用只需要知道前4个就行了,多省心:)

系统寄存器

系统配置是通过MRS和MSR指令去访问系统寄存器来实现的。

NEON寄存器

在通用寄存器之外,ARMv8还提供了32个128位NEON浮点寄存器,V0~V31。它们也可以被当作半精度寄存器H,单精度寄存器S和双精度寄存器D。

A64 ATPCS支持最多传8个参数,通过X0~X7。而A32和T32只支持4个。说人话就是,如果一个函数调用要传8个参数,就可以放到X0~X7这8个64位寄存器里。

ARM v8a小结

ARM v8a支持AArch64和AArch32两种运行态,在应用运行的EL0权限下不能切换,只能选一种。AArch64状态下只能运行A64这一种指令集,而AArch32运行态下,可以执行A32和Thumb2两种指令集,这两种之间可以自由切换。

在AArch64运行态下,我们有31个64位通用寄存器(X0~X30),32个128位NEON浮点寄存器,一个零寄存器用于写无用数据,一个PC指令指针,一个SP栈指针,状态位只需要记4个:N负Z零C进行V溢出。

既然是快餐文,就讲这么多。大家能对上面小结的了解清楚,我们就可以正式向指令集前进了〜

目录
相关文章
|
11天前
|
XML 前端开发 Android开发
Kotlin教程笔记(80) - MVVM架构设计
Kotlin教程笔记(80) - MVVM架构设计
|
24天前
|
XML 前端开发 Android开发
Kotlin教程笔记(80) - MVVM架构设计
Kotlin教程笔记(80) - MVVM架构设计
24 1
|
28天前
|
Docker 容器
docker:记录如何在x86架构上构造和使用arm架构的镜像
为了实现国产化适配,需将原x86平台上的Docker镜像转换为适用于ARM平台的镜像。本文介绍了如何配置Docker buildx环境,包括检查Docker版本、安装buildx插件、启用实验性功能及构建多平台镜像的具体步骤。通过这些操作,可以在x86平台上成功构建并运行ARM64镜像,实现跨平台的应用部署。
533 2
|
1月前
|
编解码 弹性计算 应用服务中间件
阿里云服务器Arm计算架构解析:Arm计算架构云服务器租用收费标准价格参考
阿里云服务器架构分为X86计算、Arm计算、高性能计算等多种架构,其中Arm计算架构以其低功耗、高效率的特点受到广泛关注。本文将深入解析阿里云Arm计算架构云服务器的技术特点、适用场景以及包年包月与按量付费的收费标准与最新活动价格情况,以供选择参考。
|
1月前
|
XML 前端开发 Android开发
Kotlin教程笔记(80) - MVVM架构设计
本系列学习教程笔记详细讲解了Kotlin语法,适合需要深入了解Kotlin的开发者。对于希望快速学习Kotlin语法的读者,建议参考“简洁”系列教程。本文重点介绍了Kotlin实现MVVM架构的设计思路和代码实现,包括Model、ViewModel和View层的具体实现,以及如何通过LiveData和viewModelScope有效管理数据和内存,避免内存泄漏。此外,还讨论了MVVM架构的常见缺点及应对策略,帮助开发者在实际项目中更好地应用这一设计模式。
33 1
|
1月前
|
前端开发 测试技术 数据处理
Kotlin教程笔记 - MVP与MVVM架构设计的对比
Kotlin教程笔记 - MVP与MVVM架构设计的对比
33 2
|
1月前
|
XML 前端开发 Android开发
Kotlin教程笔记(80) - MVVM架构设计
Kotlin教程笔记(80) - MVVM架构设计
31 2
|
1月前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
|
1月前
|
存储 前端开发 Java
Kotlin教程笔记 - MVVM架构怎样避免内存泄漏
Kotlin教程笔记 - MVVM架构怎样避免内存泄漏
|
1月前
|
前端开发 JavaScript 测试技术
Kotlin教程笔记 - 适合构建中大型项目的架构模式全面对比
Kotlin教程笔记 - 适合构建中大型项目的架构模式全面对比
37 0

热门文章

最新文章