Android图形显示系统——下层显示2:图形内存的申请与显示

简介: 图形内存的申请与显示这一篇回答序言中的第一个问题: 如何申请可以用来送显的内存,如何将其送往LCD?要点图形内存是进程共享内存,且根据其标志支持不同硬件设备的读与写。buffer_handle_t 是 *private_handle_t,gralloc模块自定义private_handle_t类型,并实现图形内存的实际申请。GraphicBuffer跨

图形内存的申请与显示

这一篇回答序言中的第一个问题:
如何申请可以用来送显的内存,如何将其送往LCD?

要点

  1. 图形内存是进程共享内存,且根据其标志支持不同硬件设备的读与写。
  2. buffer_handle_t 是 *private_handle_t,gralloc模块自定义private_handle_t类型,并实现图形内存的实际申请。
  3. GraphicBuffer跨进程共享的流程是用binder传输必要信息到另一进程,另一进程调用gralloc模块的registerBuffer方法映射其到自己的内存空间。
  4. GraphicBuffer与SurfaceFlinger 没有 直接关系,图形内存不仅仅是提供给窗口系统用的,也不是非得在SurfaceFlinger进程里申请。
  5. 调用 gralloc 模块的 post 函数指针,并在HAL层发送 FBIOPAN_DISPLAY 指令,是将图形内存送显的一个路径,但不是惟一。

GraphicBuffer

图形内存是用来渲染和显示的,它需要被跨进程共享,并支持不同硬件(GPU、DSP等)使用。
Android中的图形内存包裹类为GraphicBuffer。
GraphicBuffer
GraphicBuffer继承于ANativeWindowBuffer。
ANativeWindowBuffer包含w,h,stride和handle属性,其中handle对应一个private_handle_t的指针。
GraphicBuffer额外包括 mBufferMapper(映射器,为单例),mId(每块GraphicBuffer的独立id,根据进程号与申请顺序编号),mInitCheck(表示申请状态,用来检查是否实际申请到了内存)。

GraphicBuffer申请流程

申请释放图形内存的流程如下:
申请释放流程

GraphicBuffer共享流程

Map流程
尽管已经将GraphicBuffer映射到了自己的进程空间,在进一步使用时,流程上需要在使用前lock,使用完后unlock,这两个步骤一般用来作cache同步(根据共享内存策略,如果是缓存式,CPU/GPU会先把数据写到缓存,达到一定量才同步到GraphicBuffer中,unlock时可以强制把缓存同步一次)。

标志flags介绍

在 GraphicBuffer申请及lock的参数里,有个flags属性值,gralloc模块根据这个值,去判断从什么地方申请内存,按什么方式组织内存,我们来看一下:

USAGE_SW_READ_NEVER   = GRALLOC_USAGE_SW_READ_NEVER,
USAGE_SW_READ_RARELY  = GRALLOC_USAGE_SW_READ_RARELY,
USAGE_SW_READ_OFTEN   = GRALLOC_USAGE_SW_READ_OFTEN,
USAGE_SW_READ_MASK    = GRALLOC_USAGE_SW_READ_MASK,
USAGE_SW_WRITE_NEVER  = GRALLOC_USAGE_SW_WRITE_NEVER,
USAGE_SW_WRITE_RARELY = GRALLOC_USAGE_SW_WRITE_RARELY,
USAGE_SW_WRITE_OFTEN  = GRALLOC_USAGE_SW_WRITE_OFTEN,
USAGE_SW_WRITE_MASK   = GRALLOC_USAGE_SW_WRITE_MASK,
USAGE_SOFTWARE_MASK   = USAGE_SW_READ_MASK|USAGE_SW_WRITE_MASK,
USAGE_PROTECTED       = GRALLOC_USAGE_PROTECTED,
USAGE_HW_TEXTURE      = GRALLOC_USAGE_HW_TEXTURE,
USAGE_HW_RENDER       = GRALLOC_USAGE_HW_RENDER,
USAGE_HW_2D           = GRALLOC_USAGE_HW_2D,
USAGE_HW_COMPOSER     = GRALLOC_USAGE_HW_COMPOSER,
USAGE_HW_VIDEO_ENCODER= GRALLOC_USAGE_HW_VIDEO_ENCODER,
USAGE_HW_MASK         = GRALLOC_USAGE_HW_MASK,
USAGE_CURSOR          = GRALLOC_USAGE_CURSOR,

GRALLOC_USAGE_SW_READ_NEVER,GRALLOC_USAGE_SW_READ_RARELY,GRALLOC_USAGE_SW_READ_OFTEN
分别表示CPU不需要/很少会/经常会读这块GraphicBuffer,对于READ_OFTEN经常读的情况,gralloc模块应该考虑建读缓存了。
CPU写的三个标志类似。
当发觉GraphicBuffer操作起来速度慢时,就得看一下,是不是忘了配CPU的读写标志了。

GRALLOC_USAGE_HW_TEXTURE
GRALLOC_USAGE_HW_RENDER
这两个标志分别表示需要GPU读与写,TEXTURE表示可以映射为一个OpenGL的纹理,RENDER表示可以作为OpenGL的渲染目标。
一般来说,gralloc分配的内存都是gpu可读写的,也不需要加这两个标志。

GRALLOC_USAGE_HW_COMPOSER
这个表示这个GraphicBuffer可以由硬件合成器直接合成。

GRALLOC_USAGE_HW_VIDEO_ENCODER
这个表示这个GraphicBuffer可以作为Video硬解码(一般是DSP)的输入输出对象。

Gralloc

gralloc模块需要实现如下三个设备及函数指针。

内存分配

typedef struct alloc_device_t {  
    struct hw_device_t common;
    int (*alloc)(struct alloc_device_t* dev,  
            int w, int h, int format, int usage,  
            buffer_handle_t* handle, int* stride);  

    int (*free)(struct alloc_device_t* dev,  
            buffer_handle_t handle);  
} alloc_device_t;  

内存共享

typedef struct gralloc_module_t {  
    ......  

    int (*registerBuffer)(struct gralloc_module_t const* module,  
            buffer_handle_t handle);  

    int (*unregisterBuffer)(struct gralloc_module_t const* module,  
            buffer_handle_t handle);  


    int (*lock)(struct gralloc_module_t const* module,  
            buffer_handle_t handle, int usage,  
            int l, int t, int w, int h,  
            void** vaddr);  

    int (*unlock)(struct gralloc_module_t const* module,  
            buffer_handle_t handle);  
    ......  
}

显示

typedef struct framebuffer_device_t {  
    struct hw_device_t common;  
    ......
    int (*setSwapInterval)(struct framebuffer_device_t* window, int interval);//设置刷新频率
    int (*setUpdateRect)(struct framebuffer_device_t* window,int left, int top, int width, int height);//设置更新区域,对于带缓存的LCD屏,可以在只传发生了变化的区域过去,此即局部刷新。
    int (*post)(struct framebuffer_device_t* dev, buffer_handle_t buffer);//送显
    ......
} framebuffer_device_t;

关于gralloc模块如何注册如何打开,可看老罗的博客:
http://blog.csdn.net/luoshengyang/article/details/7747932
这里面需要校正的是 hardware/libhardware/modules/gralloc下面的代码编译出来的是gralloc.default.so,即Android系统默认提供的。一般来说厂商不会用这个so。
如下是Arm为Mali系列gpu提供的开源gralloc代码的链接,相对而言更有参考意义。
http://malideveloper.arm.com/cn/develop-for-mali/drivers/open-source-mali-gpus-android-gralloc-module/
Arm提供的代码里面包括自家的ump方案和标准的ion方案,一般而言,在Android4.2之后,普遍用的都是ion方案,ion内存共享方案可参考此博客的文章。
http://blog.csdn.net/qq160816/article/details/38082579
http://blog.csdn.net/qq160816/article/details/38299251

我们只看一下这份代码里面送显的部分:


static int fb_post(struct framebuffer_device_t* dev, buffer_handle_t buffer)
{
    if (private_handle_t::validate(buffer) < 0)
    {
        return -EINVAL;
    }

    private_handle_t const* hnd = reinterpret_cast<private_handle_t const*>(buffer);
    private_module_t* m = reinterpret_cast<private_module_t*>(dev->common.module);

    if (m->currentBuffer)
    {
        m->base.unlock(&m->base, m->currentBuffer);
        m->currentBuffer = 0;
    }

    if (hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER)
    {
        m->base.lock(&m->base, buffer, private_module_t::PRIV_USAGE_LOCKED_FOR_POST, 
                0, 0, m->info.xres, m->info.yres, NULL);

        const size_t offset = hnd->base - m->framebuffer->base;
        int interrupt;
        m->info.activate = FB_ACTIVATE_VBL;
        m->info.yoffset = offset / m->finfo.line_length;

#ifdef STANDARD_LINUX_SCREEN
#define FBIO_WAITFORVSYNC       _IOW('F', 0x20, __u32)
#define S3CFB_SET_VSYNC_INT _IOW('F', 206, unsigned int)
        if (ioctl(m->framebuffer->fd, FBIOPAN_DISPLAY, &m->info) == -1) 
        {
            AERR( "FBIOPAN_DISPLAY failed for fd: %d", m->framebuffer->fd );
            m->base.unlock(&m->base, buffer); 
            return 0;
        }

        {
            // enable VSYNC
            interrupt = 1;
            if(ioctl(m->framebuffer->fd, S3CFB_SET_VSYNC_INT, &interrupt) < 0) 
            {
                AERR( "S3CFB_SET_VSYNC_INT enable failed for fd: %d", m->framebuffer->fd );
                return 0;
            }
            // wait for VSYNC
#ifdef MALI_VSYNC_EVENT_REPORT_ENABLE
            gralloc_mali_vsync_report(MALI_VSYNC_EVENT_BEGIN_WAIT);
#endif
            int crtc = 0;
            if(ioctl(m->framebuffer->fd, FBIO_WAITFORVSYNC, &crtc) < 0)
            {
                AERR( "FBIO_WAITFORVSYNC failed for fd: %d", m->framebuffer->fd );
#ifdef MALI_VSYNC_EVENT_REPORT_ENABLE
                gralloc_mali_vsync_report(MALI_VSYNC_EVENT_END_WAIT);
#endif
                return 0;
            }
#ifdef MALI_VSYNC_EVENT_REPORT_ENABLE
            gralloc_mali_vsync_report(MALI_VSYNC_EVENT_END_WAIT);
#endif
            // disable VSYNC
            interrupt = 0;
            if(ioctl(m->framebuffer->fd, S3CFB_SET_VSYNC_INT, &interrupt) < 0) 
            {
                AERR( "S3CFB_SET_VSYNC_INT disable failed for fd: %d", m->framebuffer->fd );
                return 0;
            }
        }
#else 
        /*Standard Android way*/
#ifdef MALI_VSYNC_EVENT_REPORT_ENABLE
        gralloc_mali_vsync_report(MALI_VSYNC_EVENT_BEGIN_WAIT);
#endif
        if (ioctl(m->framebuffer->fd, FBIOPUT_VSCREENINFO, &m->info) == -1) 
        {
            AERR( "FBIOPUT_VSCREENINFO failed for fd: %d", m->framebuffer->fd );
#ifdef MALI_VSYNC_EVENT_REPORT_ENABLE
            gralloc_mali_vsync_report(MALI_VSYNC_EVENT_END_WAIT);
#endif
            m->base.unlock(&m->base, buffer); 
            return -errno;
        }
#ifdef MALI_VSYNC_EVENT_REPORT_ENABLE
        gralloc_mali_vsync_report(MALI_VSYNC_EVENT_END_WAIT);
#endif
#endif

        m->currentBuffer = buffer;
    } 
    else
    {
        void* fb_vaddr;
        void* buffer_vaddr;

        m->base.lock(&m->base, m->framebuffer, GRALLOC_USAGE_SW_WRITE_RARELY, 
                0, 0, m->info.xres, m->info.yres, &fb_vaddr);

        m->base.lock(&m->base, buffer, GRALLOC_USAGE_SW_READ_RARELY, 
                0, 0, m->info.xres, m->info.yres, &buffer_vaddr);

        memcpy(fb_vaddr, buffer_vaddr, m->finfo.line_length * m->info.yres);

        m->base.unlock(&m->base, buffer); 
        m->base.unlock(&m->base, m->framebuffer); 
    }

    return 0;
}

送显的核心代码是这一句:

        if (ioctl(m->framebuffer->fd, FBIOPAN_DISPLAY, &m->info) == -1) 

再往下看得跟厂商的内核代码了,这里没代码略过。关于LCD显示原理看老罗那篇就好了。
调用gralloc模块的post函数不是惟一一种将图形内存送到LCD显示的方法,另一种方式是Overlay(hwcomposer的硬件合成)。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
3月前
|
人工智能 搜索推荐 物联网
Android系统版本演进与未来展望####
本文深入探讨了Android操作系统从诞生至今的发展历程,详细阐述了其关键版本迭代带来的创新特性、用户体验提升及对全球移动生态系统的影响。通过对Android历史版本的回顾与分析,本文旨在揭示其成功背后的驱动力,并展望未来Android可能的发展趋势与面临的挑战,为读者呈现一个既全面又具深度的技术视角。 ####
|
3月前
|
缓存 Java Linux
如何解决 Linux 系统中内存使用量耗尽的问题?
如何解决 Linux 系统中内存使用量耗尽的问题?
245 48
|
3月前
|
IDE Java 开发工具
移动应用与系统:探索Android开发之旅
在这篇文章中,我们将深入探讨Android开发的各个方面,从基础知识到高级技术。我们将通过代码示例和案例分析,帮助读者更好地理解和掌握Android开发。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和技巧。让我们一起开启Android开发的旅程吧!
|
2月前
|
机器学习/深度学习 人工智能 缓存
【AI系统】推理内存布局
本文介绍了CPU和GPU的基础内存知识,NCHWX内存排布格式,以及MNN推理引擎如何通过数据内存重新排布进行内核优化,特别是针对WinoGrad卷积计算的优化方法,通过NC4HW4数据格式重排,有效利用了SIMD指令集特性,减少了cache miss,提高了计算效率。
63 3
|
2月前
|
监控 Java Android开发
深入探索Android系统的内存管理机制
本文旨在全面解析Android系统的内存管理机制,包括其工作原理、常见问题及其解决方案。通过对Android内存模型的深入分析,本文将帮助开发者更好地理解内存分配、回收以及优化策略,从而提高应用性能和用户体验。
|
2月前
|
存储 安全 Android开发
探索Android系统的最新安全特性
在数字时代,智能手机已成为我们生活中不可或缺的一部分。随着技术的不断进步,手机操作系统的安全性也越来越受到重视。本文将深入探讨Android系统最新的安全特性,包括其设计理念、实施方式以及对用户的影响。通过分析这些安全措施如何保护用户免受恶意软件和网络攻击的威胁,我们希望为读者提供对Android安全性的全面了解。
|
2月前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
86 1
|
3月前
|
监控 Java Android开发
深入探讨Android系统的内存管理机制
本文将深入分析Android系统的内存管理机制,包括其内存分配、回收策略以及常见的内存泄漏问题。通过对这些方面的详细讨论,读者可以更好地理解Android系统如何高效地管理内存资源,从而提高应用程序的性能和稳定性。
111 16
|
3月前
|
安全 Android开发 iOS开发
深入探讨Android与iOS系统的差异及未来发展趋势
本文旨在深入分析Android和iOS两大移动操作系统的核心技术差异、用户体验以及各自的市场表现,进一步探讨它们在未来技术革新中可能的发展方向。通过对比两者的开放性、安全性、生态系统等方面,本文揭示了两大系统在移动设备市场中的竞争态势和潜在变革。
|
前端开发 Android开发
Android图形绘制基础(二)
mainActivity如下: package com.cn; import android.os.Bundle; import android.
782 0

热门文章

最新文章