二叉搜索树的后序遍历序列

简介: 题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。 例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果:          8       /  \      6    10    / \    / \   5   7   9  11 因此返回true。

 

题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。

例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果:

         8
       /  \
      6    10
    / \    / \
   5   7   9  11

因此返回true。

如果输入7、4、6、5,没有哪棵树的后序遍历的结果是这个序列,因此返回false。

分析:这是一道trilogy的笔试题,主要考查对二元查找树的理解。

在后续遍历得到的序列中,最后一个元素为树的根结点。从头开始扫描这个序列,比根结点小的元素都应该位于序列的左半部分;从第一个大于根结点开始到根结点前 面的一个元素为止,所有元素都应该大于根结点,因为这部分元素对应的是树的右子树。根据这样的划分,把序列划分为左右两部分,我们递归地确认序列的左、右 两部分是不是都是二元查找树。

在后序遍历得到的序列中,最后一个数字是树的根结点的值。数组中前面的数字可以分为两部分:第一部分是左子树结点的值,他们都比根结点的值小;第二部分是右子树结点的值,它们都比根结点的值大。

 参考代码:

using namespace std;

///////////////////////////////////////////////////////////////////////
// Verify whether a squence of integers are the post order traversal
// of a binary search tree (BST)
// Input: squence - the squence of integers
//        length  - the length of squence
// Return: return ture if the squence is traversal result of a BST,
//         otherwise, return false
///////////////////////////////////////////////////////////////////////
bool verifySquenceOfBST(int squence[], int length)
{
      if(squence == NULL || length <= 0)
            return false;

      // root of a BST is at the end of post order traversal squence
      int root = squence[length - 1];

      // the nodes in left sub-tree are less than the root
      int i = 0;
      for(; i < length - 1; ++ i)
      {
            if(squence[i] > root)
                  break;
      }

      // the nodes in the right sub-tree are greater than the root
      int j = i;
      for(; j < length - 1; ++ j)
      {
            if(squence[j] < root)
                  return false;
      }

      // verify whether the left sub-tree is a BST
      bool left = true;
      if(i > 0)
            left = verifySquenceOfBST(squence, i);

      // verify whether the right sub-tree is a BST
      bool right = true;
      if(i < length - 1)
            right = verifySquenceOfBST(squence + i, length - i - 1);

      return (left && right);
}

 

img_e00999465d1c2c1b02df587a3ec9c13d.jpg
微信公众号: 猿人谷
如果您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】
如果您希望与我交流互动,欢迎关注微信公众号
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

相关文章
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
《深度剖析:特征工程—机器学习的隐秘基石》
特征工程是机器学习中至关重要的环节,它通过数据预处理、特征提取、特征选择和特征变换等技术手段,将原始数据转化为模型易于学习和理解的形式。这一过程不仅提升了模型的预测精度和泛化能力,还降低了模型复杂度,加速了训练过程。特征工程作为连接原始数据与高性能模型的桥梁,虽然幕后工作,却对模型表现起着决定性作用。掌握特征工程,能够更有效地挖掘数据价值,解决复杂问题。
360 3
|
传感器 机器学习/深度学习 人工智能
对话小鹏汽车刘毅林:城市场景的逻辑、挑战及前景
对话小鹏汽车刘毅林:城市场景的逻辑、挑战及前景
257 0
|
Web App开发 前端开发 Java
SpringMVC | 快速入门
SpringMVC | 快速入门
203 0
Java 最常见的面试题:http 响应码 301 和 302 代表的是什么?有什么区别?
Java 最常见的面试题:http 响应码 301 和 302 代表的是什么?有什么区别?
|
机器学习/深度学习 数据采集 监控
监控生产中的ML系统,您应该跟踪哪些指标?(中)
当提到“ML监控”时,这可能意味着很多事情。您是否在跟踪服务延迟?模型精度?数据质量?点击推荐栏的访问者占比? ‍这个博客将所有指标组织到一个框架中。这是高水平的,但我们希望一个全面的概述。如果您是ML监视的新手,并且希望快速掌握它,请继续阅读。
|
Python
How to use tiles? - Slice | Python
The Code method from Python book (2th Edition) on page 41 Example 2.1.6
172 0
|
9天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1200 4
|
8天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1149 87
|
7天前
|
机器学习/深度学习 物联网
Wan2.2再次开源数字人:Animate-14B!一键实现电影角色替换和动作驱动
今天,通义万相的视频生成模型又又又开源了!Wan2.2系列模型家族新增数字人成员Wan2.2-Animate-14B。
621 11

热门文章

最新文章