1、使用nvidia-smi pmon 查看linux系统的gpu情况,如下:
显然是2张显卡,如何让它们都工作呢
2、keras提供了keras.utils import multi_gpu_model使用多个显卡的功能:
在原来的model基础上使用multi_gpu_model函数指定一下gpu个数即可:
model = multi_gpu_model(model, 2)
完整列子如下(如粗黑色字体描述):
root@deeplearning:/opt/soft/keras/examples# cat mnist_mlp_multi_gpu.py
'''Trains a simple deep NN on the MNIST dataset. Gets to 98.40% test accuracy after 20 epochs (there is *a lot* of margin for parameter tuning). 2 seconds per epoch on a K520 GPU. ''' from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop from keras.utils import multi_gpu_model batch_size = 128 num_classes = 10 epochs = 20 # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Dense(512, activation='relu', input_shape=(784,))) model.add(Dropout(0.2)) model.add(Dense(512, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation='softmax')) model = multi_gpu_model(model, 2) model.summary() model.compile(loss='categorical_crossentropy', optimizer=RMSprop(), metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])
最终运行的结果如下:
root@deeplearning:/opt/soft/keras/examples# python mnist_mlp_multi_gpu.py Using TensorFlow backend. 60000 train samples 10000 test samples 2018-02-17 18:14:41.147652: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA 2018-02-17 18:14:41.304376: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:892] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2018-02-17 18:14:41.304757: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties: name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135 pciBusID: 0000:00:07.0 totalMemory: 7.43GiB freeMemory: 7.32GiB 2018-02-17 18:14:41.399113: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:892] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2018-02-17 18:14:41.399487: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 1 with properties: name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135 pciBusID: 0000:00:08.0 totalMemory: 7.43GiB freeMemory: 7.32GiB 2018-02-17 18:14:41.399579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Device peer to peer matrix 2018-02-17 18:14:41.399613: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1051] DMA: 0 1 2018-02-17 18:14:41.399627: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1061] 0: Y N 2018-02-17 18:14:41.399632: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1061] 1: N Y 2018-02-17 18:14:41.399650: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla P4, pci bus id: 0000:00:07.0, compute capability: 6.1) 2018-02-17 18:14:41.399663: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:1) -> (device: 1, name: Tesla P4, pci bus id: 0000:00:08.0, compute capability: 6.1) __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== dense_1_input (InputLayer) (None, 784) 0 __________________________________________________________________________________________________ lambda_1 (Lambda) (None, 784) 0 dense_1_input[0][0] __________________________________________________________________________________________________ lambda_2 (Lambda) (None, 784) 0 dense_1_input[0][0] __________________________________________________________________________________________________ sequential_1 (Sequential) (None, 10) 669706 lambda_1[0][0] lambda_2[0][0] __________________________________________________________________________________________________ dense_3 (Concatenate) (None, 10) 0 sequential_1[1][0] sequential_1[2][0] ================================================================================================== Total params: 669,706 Trainable params: 669,706 Non-trainable params: 0 __________________________________________________________________________________________________ Train on 60000 samples, validate on 10000 samples Epoch 1/20 60000/60000 [==============================] - 4s 61us/step - loss: 0.2460 - acc: 0.9234 - val_loss: 0.1110 - val_acc: 0.9647 Epoch 2/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.1018 - acc: 0.9693 - val_loss: 0.0804 - val_acc: 0.9766 Epoch 3/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0742 - acc: 0.9776 - val_loss: 0.0745 - val_acc: 0.9771 Epoch 4/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0599 - acc: 0.9820 - val_loss: 0.0698 - val_acc: 0.9793 Epoch 5/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0514 - acc: 0.9844 - val_loss: 0.0761 - val_acc: 0.9793 Epoch 6/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0425 - acc: 0.9872 - val_loss: 0.0775 - val_acc: 0.9800 Epoch 7/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0390 - acc: 0.9886 - val_loss: 0.0840 - val_acc: 0.9813 Epoch 8/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0334 - acc: 0.9903 - val_loss: 0.0890 - val_acc: 0.9805 Epoch 9/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0310 - acc: 0.9904 - val_loss: 0.0909 - val_acc: 0.9818 Epoch 10/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0277 - acc: 0.9920 - val_loss: 0.0877 - val_acc: 0.9825 Epoch 11/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0264 - acc: 0.9924 - val_loss: 0.0905 - val_acc: 0.9832 Epoch 12/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0257 - acc: 0.9926 - val_loss: 0.0868 - val_acc: 0.9836 Epoch 13/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0232 - acc: 0.9936 - val_loss: 0.0944 - val_acc: 0.9837 Epoch 14/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0217 - acc: 0.9941 - val_loss: 0.1022 - val_acc: 0.9834 Epoch 15/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0223 - acc: 0.9938 - val_loss: 0.0952 - val_acc: 0.9816 Epoch 16/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0190 - acc: 0.9949 - val_loss: 0.1015 - val_acc: 0.9840 Epoch 17/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0197 - acc: 0.9946 - val_loss: 0.1161 - val_acc: 0.9848 Epoch 18/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0210 - acc: 0.9945 - val_loss: 0.1078 - val_acc: 0.9822 Epoch 19/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0190 - acc: 0.9950 - val_loss: 0.1235 - val_acc: 0.9832 Epoch 20/20 60000/60000 [==============================] - 3s 49us/step - loss: 0.0185 - acc: 0.9954 - val_loss: 0.0980 - val_acc: 0.9843 Test loss: 0.0980480428516 Test accuracy: 0.9843