原文地址:点击打开链接
[摘要]本文介绍C# WinForm多线程开发之ThreadPool 与 Timer,并提供详细的示例代码供参考。
本文接上文,继续探讨WinForm中的多线程问题,再次主要探讨threadpool 和timer。
一 、ThreadPool
线程池(ThreadPool)是一种相对较简单的方法,它适应于一些需要多个线程而又较短任务(如一些常处于阻塞状态的线程),它的缺点是对创建的线程不能加以控制,也不能设置其优先级。由于每个进程只有一个线程池,当然每个应用程序域也只有一个线程池(对线),所以你将发现 ThreadPool类的成员函数都为static!当你首次调用ThreadPool.QueueUserWorkItem、 ThreadPool.RegisterWaitForSingleObject等,便会创建线程池实例。下面我就线程池当中的两函数作一介绍:
public static bool QueueUserWorkItem( //调用成功则返回true WaitCallback callBack,//要创建的线程调用的委托 object state //传递给委托的参数 )//它的另一个重载函数类似,只是委托不带参数而已此函数的作用是把要创建的线程排队到线程池,当线程池的可用线程数不为零时(线程池有创建线程数的限制,缺身值为25),便创建此线程,否则就排队到线程池等到它有可用的线程时才创建。
public static RegisteredWaitHandle RegisterWaitForSingleObject( WaitHandle waitObject,// 要注册的 WaitHandle WaitOrTimerCallback callBack,// 线程调用的委托 object state,//传递给委托的参数 int TimeOut,//超时,单位为毫秒, bool executeOnlyOnce //是否只执行一次 ); public delegate void WaitOrTimerCallback( object state,//也即传递给委托的参数 bool timedOut//true表示由于超时调用,反之则因为waitObject );
此函数的作用是创建一个等待线程,一旦调用此函数便创建此线程,在参数waitObject变为终止状态或所设定的时间TimeOut到了之前,它都处于 “阻塞”状态,值得注意的一点是此“阻塞”与Thread的WaitSleepJoin状态有很大的不同:当某Thread处于 WaitSleepJoin状态时CPU会定期的唤醒它以轮询更新状态信息,然后再次进入WaitSleepJoin状态,线程的切换可是很费资源的;而用此函数创建的线程则不同,在触发它运行之前,CPU不会切换到此线程,它既不占用CPU的时间又不浪费线程切换时间,但CPU又如何知道何时运行它?实际上线程池会生成一些辅助线程用来监视这些触发条件,一旦达到条件便启动相应的线程,当然这些辅助线程本身也占用时间,但是如果你需创建较多的等待线程时,使用线程池的优势就越加明显。
更详细内容demo:
namespace TestMethodInvoker { public partial class Form2 : Form { public Form2() { InitializeComponent(); } private void button1_Click(object sender, EventArgs e) { //ThreadPool.RegisterWaitForSingleObject( // ev, // new WaitOrTimerCallback(WaitThreadFunc), // 4, // 2000, // false//表示每次完成等待操作后都重置计时器,直到注销等待 // ); ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadFunc), "test1"); //Thread.Sleep(10000); } private delegate void MyInvokeDelegate(string name); private void Test(object o) { richTextBox1.Text += string.Format("the object is {0} \n", o); } public void ThreadFunc(object b) { this.Invoke(new MyInvokeDelegate(Test), b); } public void WaitThreadFunc(object b, bool t) { richTextBox1.Text += string.Format("the object is {0},t is {1}\n", b, t); } } }一个很值得扩展的地方时,这里的invoke 用的是代理,其实还有其他的方法,比如 action 和func。实例代码如下:
this.Invoke(new Action<string>(this.ChangeText), o.ToString()); this.Invoke(new Action(delegate() { this.textBox1.Text = o.ToString();})); private void DoSomething(object o) { System.Func<string, int> f = new Func<string, int>(this.GetId); object result = this.Invoke(f, o.ToString()); MessageBox.Show(result.ToString()); } private int GetId(string name) { this.textBox1.Text = name; if (name == "Y") { return 999; } else { return 0; } }
二、 Timer
它适用于需周期性调用的方法,它不在创建计时器的线程中运行,它在由系统自动分配的单独线程中运行。这和Win32中的SetTimer方法类似。它的构造为:
public Timer( TimerCallback callback,//所需调用的方法 object state,//传递给callback的参数 int dueTime,//多久后开始调用callback int period//调用此方法的时间间隔 );//
如果 dueTime 为0,则 callback 立即执行它的首次调用。如果 dueTime 为 Infinite,则 callback 不调用它的方法。计时器被禁用,但使用 Change 方法可以重新启用它。如果 period 为0或 Infinite,并且 dueTime 不为 Infinite,则 callback 调用它的方法一次。计时器的定期行为被禁用,但使用 Change 方法可以重新启用它。如果 period 为零 (0) 或 Infinite,并且 dueTime 不为 Infinite,则 callback 调用它的方法一次。计时器的定期行为被禁用,但使用 Change 方法可以重新启用它。
在创建计时器之后若想改变它的period和dueTime,我们可以通过调用Timer的Change方法来改变:
public bool Change( int dueTime, int period );//显然所改变的两个参数对应于Timer中的两参数。