IBM X3650 M3服务器上RAID配置实战

简介:

背景知识:RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现的。RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能确保数据安全性,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。RAID可以分为软raid和硬raid,一般中高档的服务器多使用硬件raid控制器,硬件Raid基于Raid卡,软件Raid基于操作系统。

单位新到一台IBM X3650 M3服务器准备做测试用,有一段时间没有亲自做RAID了,所以自己动手实践一下。看一下机器配置参数单,可以发现RAID卡支持RAID 0, 1, 5, 10。一般当硬盘连接到阵列卡(RAID)上时,操作系统将不能直接看到物理的硬盘,因此需要创建RAID,这样系统才能够正确识别它,然后进行安装系统。根据需要准备对这台机器做RAID10 ,具体步骤如下:
一、启动机器,自检过程中会有<CTRL>+<H>的提示,同时按下这两个键再点击START,就可以进入WEBBIOS的图形设置界面。如图示:

二、点击Configuration Wizard,进入阵列设置向导。

Clear Configuration(清除配置):清除已有的配置信息,注意会丢失所有的数据。
New Configuration(全新配置):清除已有的配置信息,并且全新创建新的配置。
Add Configuration(添加配置):保留原有配置信息,并且添加新的硬盘到原有的配置中。(该配置通常不会引起数据丢失,但该操作有风险,建议先备份数据!)
注意:如果选择前两个选项(Clear Configuration 和New Configuration),会丢失所有
数据!请先备份所有数据!如果是新机,就不用担心此项了。
接下来,我们选择 New Configuration,在左侧单击选中磁盘,然后选择addtoarray把它添加到右侧diskgroups中,一个组中添加两块磁盘,创建完第一组后点击accept dg。

配置raid10 需要创建两个物理硬盘数量相同的Disk Group,如下图所示。

选择相应硬盘,配置完Disk Group 之后,点击Accept 按钮。然后点击Next 按钮进入配置Span 的界面,选择已有的Disk Group 点击Add to SPAN 按钮加入到Span 中。然后再点击Next 按钮。

进入配置RAID10 参数界面,根据需求修改相应参数。如Strip Size 和RAID Level 等参数。(通常建议选择默认设置。)配置完成之后,点击Accept 按钮。

进入Virtual Disk 预览界面,确认无误后,点击Accept 按钮。

提示保存配置信息。点击Yes 按钮。

提示会丢失所有数据,确认后,点击Yes 按钮。

配置完成后进入的界面。

点击Home 按钮返回主界面时,可以看到目前所有硬盘的状态。

点击Exit,保存退出。重启机器,放入系统引导盘就可以正常安装系统了。

补充:

RAID的几种工作模式

1、RAID0

即Data Stripping数据分条技术。RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。

(1)、RAID 0最简单方式

就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量。速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠性是单独使用一块硬盘的1/n。

(2)、RAID 0的另一方式

是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。提高系统的性能。

2、RAID 1

RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。RAID 1有以下特点:

(1)、RAID 1的每一个磁盘都具有一个对应的镜像盘,任何时候数据都同步镜像,系统可以从一组镜像盘中的任何一个磁盘读取数据。

(2)、磁盘所能使用的空间只有磁盘容量总和的一半,系统成本高。

(3)、只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行。

(4)、出现硬盘故障的RAID系统不再可靠,应当及时的更换损坏的硬盘,否则剩余的镜像盘也出现问题,那么整个系统就会崩溃。

(5)、更换新盘后原有数据会需要很长时间同步镜像,外界对数据的访问不会受到影响,只是这时整个系统的性能有所下降。

(6)、RAID 1磁盘控制器的负载相当大,用多个磁盘控制器可以提高数据的安全性和可用性。

3、RAID0+1

把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立带区集至少4个硬盘。

4、RAID2

电脑在写入数据时在一个磁盘上保存数据的各个位,同时把一个数据不同的位运算得到的海明校验码保存另一组磁盘上,由于海明码可以在数据发生错误的情况下将错误校正,以保证输出的正确。但海明码使用数据冗余技术,使得输出数据的速率取决于驱动器组中速度最慢的磁盘。RAID2控制器的设计简单。

5、RAID3:带奇偶校验码的并行传送

RAID 3使用一个专门的磁盘存放所有的校验数据,而在剩余的磁盘中创建带区集分散数据的读写操作。当一个完好的RAID 3系统中读取数据,只需要在数据存储盘中找到相应的数据块进行读取操作即可。但当向RAID 3写入数据时,必须计算与该数据块同处一个带区的所有数据块的校验值,并将新值重新写入到校验块中,这样无形虽增加系统开销。当一块磁盘失效时,该磁盘上的所有数据块必须使用校验信息重新建立,如果所要读取的数据块正好位于已经损坏的磁盘,则必须同时读取同一带区中的所有其它数据块,并根据校验值重建丢失的数据,这使系统减慢。当更换了损坏的磁盘后,系统必须一个数据块一个数据块的重建坏盘中的数据,整个系统的性能会受到严重的影响。RAID 3最大不足是校验盘很容易成为整个系统的瓶颈,对于经常大量写入操作的应用会导致整个RAID系统性能的下降。RAID 3适合用于数据库和WEB服务器等。

6、 RAID4

RAID4即带奇偶校验码的独立磁盘结构,RAID4和RAID3很象,它对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘,RAID4的特点和RAID3也挺象,不过在失败恢复时,它的难度可要比RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。

7、 RAID5

RAID 5把校验块分散到所有的数据盘中。RAID 5使用了一种特殊的算法,可以计算出任何一个带区校验块的存放位置。这样就可以确保任何对校验块进行的读写操作都会在所有的RAID磁盘中进行均衡,从而消除了产生瓶颈的可能。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。RAID 5提高了系统可靠性,但对数据传输的并行性解决不好,而且控制器的设计也相当困难。

8、RAID6

RAID6即带有两种分布存储的奇偶校验码的独立磁盘结构,它是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合,使用了二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载,很少人用。

9、 RAID7

RAID7即优化的高速数据传送磁盘结构,它所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性和系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传送信道以提高效率。可以连接多台主机,当多用户访问系统时,访问时间几乎接近于0。但如果系统断电,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作,RAID7系统成本很高。

10、 RAID10

RAID10即高可靠性与高效磁盘结构它是一个带区结构加一个镜象结构,可以达到既高效又高速的目的。
















本文转自东方之子736651CTO博客,原文链接:http://blog.51cto.com/ecloud/1529572 ,如需转载请自行联系原作者


相关文章
|
3月前
|
人工智能 JavaScript API
零基础构建MCP服务器:TypeScript/Python双语言实战指南
作为一名深耕技术领域多年的博主摘星,我深刻感受到了MCP(Model Context Protocol)协议在AI生态系统中的革命性意义。MCP作为Anthropic推出的开放标准,正在重新定义AI应用与外部系统的交互方式,它不仅解决了传统API集成的复杂性问题,更为开发者提供了一个统一、安全、高效的连接框架。在过去几个月的实践中,我发现许多开发者对MCP的概念理解透彻,但在实际动手构建MCP服务器时却遇到了各种技术壁垒。从环境配置的细节问题到SDK API的深度理解,从第一个Hello World程序的调试到生产环境的部署优化,每一个环节都可能成为初学者的绊脚石。因此,我决定撰写这篇全面的实
561 67
零基础构建MCP服务器:TypeScript/Python双语言实战指南
|
7月前
|
存储 数据挖掘 数据库
服务器数据恢复—服务器raid磁盘出现故障的数据恢复案例
一台服务器中有一组由三块SAS硬盘组建的raid阵列。服务器上部署的数据库存储在D分区,数据库备份存储在E分区。 服务器上一块硬盘指示灯显示红色。D分区不可识别。E分区虽然可以识别,但是E分区拷贝文件报错。 管理员重启服务器,先离线的硬盘上线开始同步数据,同步没有完成的情况下管理员将服务器强制关机,之后没有动过服务器。
|
3月前
|
JSON 前端开发 Go
Go语言实战:创建一个简单的 HTTP 服务器
本篇是《Go语言101实战》系列之一,讲解如何使用Go构建基础HTTP服务器。涵盖Go语言并发优势、HTTP服务搭建、路由处理、日志记录及测试方法,助你掌握高性能Web服务开发核心技能。
|
5月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
335 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
3月前
|
Oracle 安全 关系型数据库
服务器数据恢复—热备盘未成功激活导致raid崩溃的数据恢复案例
一台服务器中有5块硬盘,其中的4块组建了一组RAID5阵列,剩下一块盘作为热备盘(Hot-Spare)使用。服务器操作系统为linux,应用系统为构架于oracle数据库的一个oa。 raid5阵列中一块盘离线,但热备盘未自动激活rebuild。直到另外一块盘离线,RAID崩溃。 由于oracle已经不再对本案例中的oa系统提供后续支持,用户方要求尽可能恢复数据和操作系统。经过检测发现热备盘完全没有启用,硬盘无明显物理故障,无明显同步表现。
|
6月前
|
弹性计算 Linux 网络安全
阿里云服务器迁移中心SMC实战指南:跨平台业务迁移教程参考
现在越来越多的个人和企业用户选择将其他云平台或者服务商的业务迁移到阿里云,但是如何快速且安全完成迁移是很多用户比较关注的问题,我们可以选择使用阿里云提供的服务器迁移中心(Server Migration Center,简称SMC),这个产品是阿里云提供给您的迁移平台,专注于提供能力普惠、体验一致、效率至上的迁移服务,满足您在阿里云的迁移需求。本文为大家展示使用阿里云服务器迁移中心SMC将其他云平台业务迁移至阿里云的教程,以供参考。
|
6月前
|
弹性计算 资源调度 搜索推荐
阿里云ECS中长期成本节省计划解析:从原理到实战,助力企业降本提效
阿里云ECS节省计划的推出为企业用户提供了一种全新的成本优化方案。通过一次性购买的方式享受长期按量付费的折扣权益,客户不仅可以大幅降低ECS资源的使用成本还可以享受更高的灵活性和便捷性。本文将从多个维度深入剖析阿里云ECS节省计划,包括其核心优势、详尽的购买使用指引、与传统付费模式的全面对比,以及一客户成功案例,以供大家了解和参考。
|
6月前
|
Go API 定位技术
MCP 实战:用 Go 语言开发一个查询 IP 信息的 MCP 服务器
随着 MCP 的快速普及和广泛应用,MCP 服务器也层出不穷。大多数开发者使用的 MCP 服务器开发库是官方提供的 typescript-sdk,而作为 Go 开发者,我们也可以借助优秀的第三方库去开发 MCP 服务器,例如 ThinkInAIXYZ/go-mcp。 本文将详细介绍如何在 Go 语言中使用 go-mcp 库来开发一个查询 IP 信息的 MCP 服务器。
363 0
|
10月前
|
存储 监控 调度
云服务器成本优化深度解析与实战案例
本文深入探讨了云服务器成本优化的策略与实践,涵盖基本原则、具体策略及案例分析。基本原则包括以实际需求为导向、动态调整资源、成本控制为核心。具体策略涉及选择合适计费模式、优化资源配置、存储与网络配置、实施资源监控与审计、应用性能优化、利用优惠政策及考虑多云策略。文章还通过电商、制造企业和初创团队的实际案例,展示了云服务器成本优化的有效性,最后展望了未来的发展趋势,包括智能化优化、多云管理和绿色节能。

热门文章

最新文章