微博feed系统的推(push)模式和拉(pull)模式和时间分区拉模式架构探讨

简介: sns系统,微博系统都应用到了feed(每条微博或者sns里的新鲜事等我们称作feed)系统,不管是twitter.com或者国内的新浪微博,人人网等,在各种技术社区,技术大会上都在分享自己的feed架构,也就是推拉模式(timyang上次也分享了新浪微薄的模式)。

   sns系统,微博系统都应用到了feed(每条微博或者sns里的新鲜事等我们称作feed)系统,不管是twitter.com或者国内的新浪微博,人人网等,在各种技术社区,技术大会上都在分享自己的feed架构,也就是推拉模式(timyang上次也分享了新浪微薄的模式)。下面我们就微博的feed推拉(push,pull)模式做一下探讨,并提出新的时间分区拉模式。

      众所周知,在微博中,当你发表一篇微博,那么所有关注你的followers(粉丝)都会在一定的时间内收到你的微薄,这有点像群发一封邮件,所有的抄送者都会在一定的时间内收到。到这里,你可能觉得没有什么难度。我们看下下面的截图:

     

       图一:新浪微博姚晨

         图二:twitter上冯大辉

     新浪微博的姚晨粉丝有2594751,她发表任何一篇微博,都需要2594751个粉丝在一定的时间内收到,twitter的冯大辉发表一篇的话,需要19868个followers收到。

     相反,姚晨需要收到他关注的545个人的所有更新,冯大辉需要收到他关注的2525个人的所有更新。到这里,你是不是感觉到有那么一点点小挑战呢?

     下面我们看下微博一般的整体结构图:

      

                 图三:微博整体结构

       图中展示了微博的整体数据流程,先了解下整体的数据结构,没有涉及到followers等的推拉模式处理。下面我们再看下推模式(push):

          图四:推模式结构

   推模式需要把一篇微博推送给所有关注他的人(推给所有的粉丝),比如姚晨,我们就需要推送给2594751个用户的feeds表中。当然,feeds表可以很好的进行sharding,存储也都是一些数字型的字段,存储空间可能不是很大,用户在查询自己关注的所有人的feed时,速度快,性能非常高,但是推送量会非常大,姚晨发表一篇,就会产生200多万条数据。试想,一个大量用户的微薄系统通过使用推模式,是不是会产生非常惊人的数据呢?

    下面看下拉模式(pull)

            图五:拉模式

     拉模式只需要用户发表微博时,存储一条微博数据到feeds表中(feeds表可以是一个临时表,只保存近期可接受范围的数据).用户每次查询feed时都会去查询feeds表。比如姚晨打开自己的微薄首页,就产生:SELECT id FROM feeds where uid in(following uid list) ORDER BY id DESC LIMIT n(查询最新的n条),缓存到memcached

uidlist=>{data:id list,timeline:上次查询出来的最新的一条数据的时间}

再次刷新:SELECT id FROM feeds where uid in(following uid list) AND timeline>(memcached存储的上次的timeline) ORDER BY id DESC LIMIT n

 

    这种模式实现起来也是比较简单和容易的,只是在查询的时候需要多考虑下缓存的结构。但是feeds表会产生很大的压力,怎么说feeds表也要保存最近十天半个月的数据吧,对于一个大点的系统,这会产生比较大的数据,如果following的人数比较多,数据库的压力就会非常大。而且一般在线的用户,客户端都会定期扫描,又会增加很大的压力,这在查询性能上没有推模式的效率高。

     下面我们在对拉模式做一下改进优化

     

           图五:拉模式(pull)-改进(时间分区拉模式)

           拉模式的改进主要是在feeds的存储上,使用按照时间进行分区存储。分为最近时间段(比如最近一个小时),近期的,比较长时期等等。我们再来看下查询的流程,比如姚晨登陆微博首页,假设缓存中没有任何数据,那么我们可以查询比较长时期的feeds表,然后进入缓存。下一次查询,通过查询缓存中的数据的timeline,如果timeline还在最近一个小时内,那么只需要查询最近一个小时的数据的feed表,最近一个小时的feeds表比图四的feeds表可要小很多,查询起来速度肯定快几个数量级了。

          改进模式的重点在于feeds的时间分区存储,根据上次查询的timeline来决定查询应该落在那个表。一般情况下,经常在线的用户,频繁使用的客户端扫描操作,经常登录的用户,都会落在最近的feeds表区间,查询都是比较高效的。只有那些十天,半个月才登录一次的用户需要去查询比较长时间的feeds大表,一旦查询过了,就又会落在最近时间区域,所以效率也是非常高的。

         关于时间的分区,需要根据数据量,用户访问特点进行一个合理的切分。如果数据发表量非常大,可以进行更多的分区。

        上面介绍的推模式和拉模式都有各自的特点,个人觉得时间分区拉模式弥补了图四的拉模式的很大的不足,是一个成本比较低廉的解决方案。当然,时间分区拉模式也可以结合推模式,根据某些特点来增加系统的性能。

        后记:本文的目的是介绍时间分区拉模式,本人对新浪微博和twitter等的推拉模式的细节并不清楚。

如何联系我:【万里虎】www.bravetiger.cn 【QQ】3396726884 (咨询问题100元起,帮助解决问题500元起) 【博客】http://www.cnblogs.com/kenshinobiy/
目录
相关文章
|
5月前
|
SQL 前端开发 关系型数据库
如何开发一套研发项目管理系统?(附架构图+流程图+代码参考)
研发项目管理系统助力企业实现需求、缺陷与变更的全流程管理,支持看板可视化、数据化决策与成本优化。系统以MVP模式快速上线,核心功能包括需求看板、缺陷闭环、自动日报及关键指标分析,助力中小企业提升交付效率与协作质量。
|
4月前
|
数据采集 机器学习/深度学习 运维
量化合约系统开发架构入门
量化合约系统核心在于数据、策略、风控与执行四大模块的协同,构建从数据到决策再到执行的闭环工作流。强调可追溯、可复现与可观测性,避免常见误区如重回测轻验证、忽视数据质量或滞后风控。初学者应以MVP为起点,结合回测框架与实时风控实践,逐步迭代。详见相关入门与实战资料。
|
5月前
|
JSON 文字识别 BI
如何开发车辆管理系统中的加油管理板块(附架构图+流程图+代码参考)
本文针对中小企业在车辆加油管理中常见的单据混乱、油卡管理困难、对账困难等问题,提出了一套完整的系统化解决方案。内容涵盖车辆管理系统(VMS)的核心功能、加油管理模块的设计要点、数据库模型、系统架构、关键业务流程、API设计与实现示例、前端展示参考(React + Antd)、开发技巧与工程化建议等。通过构建加油管理系统,企业可实现燃油费用的透明化、自动化对账、异常检测与数据分析,从而降低运营成本、提升管理效率。适合希望通过技术手段优化车辆管理的企业技术人员与管理者参考。
|
5月前
|
消息中间件 缓存 JavaScript
如何开发ERP(离散制造-MTO)系统中的生产管理板块(附架构图+流程图+代码参考)
本文详解离散制造MTO模式下的ERP生产管理模块,涵盖核心问题、系统架构、关键流程、开发技巧及数据库设计,助力企业打通计划与执行“最后一公里”,提升交付率、降低库存与浪费。
|
4月前
|
前端开发 JavaScript BI
如何开发车辆管理系统中的车务管理板块(附架构图+流程图+代码参考)
本文介绍了中小企业如何通过车务管理模块提升车辆管理效率。许多企业在管理车辆时仍依赖人工流程,导致违章处理延误、年检过期、维修费用虚高等问题频发。将这些流程数字化,可显著降低合规风险、提升维修追溯性、优化调度与资产利用率。文章详细介绍了车务管理模块的功能清单、数据模型、系统架构、API与前端设计、开发技巧与落地建议,以及实现效果与验收标准。同时提供了数据库建表SQL、后端Node.js/TypeScript代码示例与前端React表单设计参考,帮助企业快速搭建并上线系统,实现合规与成本控制的双重优化。
|
5月前
|
数据采集 运维 数据可视化
AR 运维系统与 MES、EMA、IoT 系统的融合架构与实践
AR运维系统融合IoT、EMA、MES数据,构建“感知-分析-决策-执行”闭环。通过AR终端实现设备数据可视化,实时呈现温度、工单等信息,提升运维效率与生产可靠性。(238字)
|
5月前
|
消息中间件 JavaScript 前端开发
如何开发ERP(离散制造-MTO)系统中的技术管理板块(附架构图+流程图+代码参考)
本文详解ERP(离散制造-MTO)系统中的技术管理板块,涵盖产品定义、BOM、工序、工艺文件及变更控制的结构化与系统化管理。内容包括技术管理的核心目标、总体架构、关键组件、业务流程、开发技巧与最佳实践,并提供完整的参考代码,助力企业将技术数据转化为可执行的生产指令,提升制造效率与质量。
|
5月前
|
人工智能 监控 测试技术
告别只会写提示词:构建生产级LLM系统的完整架构图​
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
781 52
|
4月前
|
机器学习/深度学习 人工智能 缓存
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
本文提出面向边缘通用智能的多大语言模型(Multi-LLM)系统,通过协同架构、信任机制与动态编排,突破传统边缘AI的局限。融合合作、竞争与集成三种范式,结合模型压缩、分布式推理与上下文优化技术,实现高效、可靠、低延迟的边缘智能,推动复杂场景下的泛化与自主决策能力。
419 3
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
|
4月前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
831 23

热门文章

最新文章