谷歌开源“教机器画画”项目代码,公开5000万幅简笔画数据集

简介:
本文来自AI新媒体量子位(QbitAI)

这个小游戏,你大概还有点印象。机器给出一个名词,给你20秒时间画画,同时,它会根据你画的东西一直猜猜猜。

游戏的名字,叫“Quick, Draw!”。

今天,谷歌开放了Quick, Draw!数据集,包含345类、5000万幅简笔画。这些简笔画,来自这个小游戏的1500万用户。

数据集的GitHub地址:
https://github.com/googlecreativelab/quickdraw-dataset

与通常的图像数据集不同,谷歌捕捉了这些简笔画的绘制过程,存储成为一组带时间戳的向量,并加上了元数据信息标签,包括机器要求用户画的是什么、用户所在国家等。

机器成功认出的图像,也就是被收录到数据集中的那些,都展示在Quick, Draw!的数据集网站上:https://quickdraw.withgoogle.com/data

 Quick, Draw!游戏玩家画的苹果

谷歌希望开发者、研究人员和艺术家,能用这些数据来进行研究、探索。他们说,这些简笔画构成了一个独特的数据集,开发者可以用它来训练新的神经网络,研究人员可以借助它探索世界各地人民画画的模式,艺术家则可能从中获得灵感,创造我们从未想过的东西。

如果你用这个数据集创造了什么东西,谷歌希望你通过邮件告诉他们,或者去A.I. Experiments网站提交。

邮箱:quickdraw-support@google.com
网站:https://aiexperiments.withgoogle.com/submit

上个月,谷歌用这个数据集完成了一个教机器画画的项目:Sketch-RNN。在这个项目中,机器不仅学会了画简笔画,还对自己所画的东西建立了抽象概念,比如说知道猫应该有两只眼睛,猪有四条腿。

谷歌大脑团队研究员David Ha和Douglas Eck发表了论文《A Neural Representation of Sketch Drawings》来详细阐释这个项目,并在谷歌官方博客上发文做了通俗说明。

在Quick, Draw!数据集开放之后,Sketch-RNN模型也在谷歌的艺术项目Magenta下开源。谷歌开放了Sketch-RNN的预训练模型、供你在TensorFlow中训练自己模型用的源代码、以及一份Jupyter notebook教程。

最后,这里还有一个Douglas Eck发布的视频,展示了Sketch-RNN生成的瑜伽过程:


10秒左右,模型为画面中的人,加了个瑜伽垫,你会看到机器懵了一会儿。具体原因,作者在项目相关论文中做出了解释。

Sketch-RNN开源模型:
https://github.com/tensorflow/magenta/tree/master/magenta/models/sketch_rnn
A Neural Representation of Sketch Drawings论文:
https://arxiv.org/abs/1704.03477

【完】

本文作者:李林 
原文发布时间: 2017-05-19
相关文章
GitHub登顶下架!谷歌牛人78w字《算法图解》,终于被我扒下来了
今天给大家带来了一本算法方向的好书:巴尔加瓦(Aditya Bhargava)老师 著,袁国忠老师译的 《算法图解:像小说一样有趣的算法入门书》,网上有没有开源版本我不知道,我就看他内容不错所以推荐给大家!小编会在文末附电子版免费下载方式。
|
机器学习/深度学习 人工智能 Linux
AI让照片换发型,Barbershop开源项目安装使用 | 机器学习
AI让照片换发型,Barbershop开源项目安装使用 | 机器学习
AI让照片换发型,Barbershop开源项目安装使用 | 机器学习
|
5月前
|
人工智能 JSON 算法
不是吧?这么好用的开源标注工具,竟然还有人不知道…
LabelU是一款专为AI项目设计的强大多模态数据标注工具,支持图像、视频、音频等多样化数据类型。它提供灵活的标注工具与自定义配置选项,让用户根据需求定制高效标注流程。特色功能包括一键载入预标注结果以简化修正工作,以及支持JSON、COCO等多种格式的导出选项。LabelU既可本地部署确保数据安全,也提供在线版本方便快速上手。此外,OpenDataLab还开源了Label-LLM对话标注工具和MinerU文档处理工具,进一步丰富了数据准备的工作流。欢迎访问[LabelU](https://github.com/opendatalab/labelU)了解更多详情,并为这些优秀工具点赞支持!
156 0
|
6月前
|
机器人 vr&ar 计算机视觉
|
8月前
|
人工智能 算法 开发者
苹果卷开源大模型,公开代码、权重、数据集、训练全过程,OpenELM亮相
【5月更文挑战第9天】苹果开源大语言模型OpenELM,提升效率和准确性,参数仅为10亿时比OLMo准确度高2.36%。苹果首次公开训练全过程、权重、数据集和代码,增强研究透明度,支持在苹果设备上推理和微调,推动AI研究发展。但训练资源需求高和模型可解释性仍是挑战。论文链接:[arxiv.org/pdf/2404.14619.pdf](https://arxiv.org/pdf/2404.14619.pdf)
92 3
|
机器学习/深度学习 人工智能 自然语言处理
牛刀小试:我用自创的测试集参加了阿里中文竞技场双模型评测
8月我自己创建了一个包含320个问题的大语言模型测试集,刚好阿里魔搭社区正在举办中文模型评测活动,本着对这些模型效果的好奇,刚好手里也有“验丹指南”,所以就抽时间来玩一把模型测试。
|
编解码 自然语言处理 算法
无需任何3D数据,直接文本生成高质量3D内容,清华朱军团队带来重大进展
无需任何3D数据,直接文本生成高质量3D内容,清华朱军团队带来重大进展
272 0
|
人工智能 算法 JavaScript
既Facebook道歉AI误将黑人标记为灵长类动物后,推荐GitHub 上 7 个 yyds 算法项目
既Facebook道歉AI误将黑人标记为灵长类动物后,推荐GitHub 上 7 个 yyds 算法项目
138 1
既Facebook道歉AI误将黑人标记为灵长类动物后,推荐GitHub 上 7 个 yyds 算法项目
|
人工智能 JSON 前端开发
Star量近8万,大火AutoGPT星标超PyTorch,网友:看清它的局限性
Star量近8万,大火AutoGPT星标超PyTorch,网友:看清它的局限性
106 0
|
机器学习/深度学习 人工智能 并行计算
首个大众可用PyTorch版AlphaFold2复现,哥大开源OpenFold,star量破千
首个大众可用PyTorch版AlphaFold2复现,哥大开源OpenFold,star量破千
296 0