二、存储架构演变

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:
1、架构演变
 

在2014年7月,为了准备当时的814撒娇节大促销活动,我们把单个redis的服务迁移到twemproxy上。twemproxy在后端快速完成数据分片和扩容。为了避免再次扩容,我们静态分配足够多的资源。
之后,twemproxy暴露出来的系统瓶颈很多,资源使用很多,也存在一定的浪费。我们决定用redis cluster取代这种复杂的三层架构。
redis cluster GA之后,我们就开始上线使用。最初是3.0.2 版本,后面大量使用3.0.3 ,上个月开始使用3.0.7版本。
下面简单对比下两种架构,解析下他们的优缺点。

2、Twemproxy架构 优点
  • sharding逻辑对开发透明,读写方式和单个redis一致。
  • 可以作为cache和storage的proxy(by auto-eject)。

缺点
  • 架构复杂,层次多。包括lvs、twemproxy、redis、sentinel和其控制层程序。
  • 管理成本和硬件成本很高。
  • 2 * 1Gbps 网卡的lvs机器,最大能支撑140万pps。
  • 流量高的系统,proxy节点数和redis个数接近。
  • Redis层仍然扩容能力差,预分配足够的redis存储节点。
 


这是twemproxy的架构,客户端直接连接最上面的lvs(LB),第二层是同构的twemproxy节点,下面的redis master节点以及热备的slave节点,另外还有独立的sentinel集群和切换控制程序,twemproxy先介绍到这里。

3、Redis Cluster架构 优点
  • 无中心 架构。
  • 数据按照slot存储分布在多个redis实例上。
  • 增加slave做standby数据副本,用于failover,使集群快速恢复。
  • 实现故障auto failover。节点之间通过gossip协议交换状态信息;投票机制完成slave到master角色的提升。
  • 亦可manual failover,为升级和迁移提供可操作方案。
  • 降低硬件成本和运维成本,提高系统的扩展性和可用性。

缺点和不足的地方
  • client实现复杂,驱动要求实现smart client,缓存slots mapping信息并及时更新。
  • 目前仅JedisCluster相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。
  • 客户端的不成熟,影响应用的稳定性,提高开发难度。
  • 节点会因为某些原因发生阻塞(阻塞时间大于clutser-node-timeout),被判断下线。这种failover是没有必要,sentinel也存在这种切换场景。
    cluster的架构如下:
 


图上只有master节点(slave略去),所有节点构成一个完全图,slave节点在集群中与master只有角色和功能的区别。
架构演变讲完了,开始讲第三部分,也是大家最感兴趣的一部分。





本文作者:geelou
本文来自云栖社区合作伙伴rediscn,了解相关信息可以关注redis.cn网站。
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
8天前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
42 6
|
8天前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
25 1
|
3月前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
|
3月前
|
运维 监控 Cloud Native
自动化运维的魔法书云原生之旅:从容器化到微服务架构的演变
【8月更文挑战第29天】本文将带你领略自动化运维的魅力,从脚本编写到工具应用,我们将一起探索如何通过技术提升效率和稳定性。你将学会如何让服务器自主完成更新、监控和故障修复,仿佛拥有了一本能够自动翻页的魔法书。
|
3月前
|
存储 缓存 前端开发
Django 后端架构开发:存储层调优策略解析
Django 后端架构开发:存储层调优策略解析
53 2
|
30天前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
1月前
|
负载均衡 API 持续交付
深入探索微服务架构的演变与实践
【10月更文挑战第5天】 在当今软件开发领域,微服务架构以其独特的优势,如解耦、灵活性和可扩展性,已成为构建现代应用的首选方法。本文将全面解析微服务的核心概念、发展历程及其在实际应用中的最佳实践,帮助读者深入理解并有效实施微服务架构。
31 3
|
1月前
|
消息中间件 负载均衡 Cloud Native
云原生之旅:从容器到微服务的架构演变
在数字化转型的风潮中,云原生技术以其灵活性、可扩展性和弹性而备受青睐。本文将通过一个虚拟的故事,讲述一个企业如何逐步拥抱云原生,实现从传统架构向容器化和微服务架构的转变,以及这一过程中遇到的挑战和解决方案。我们将以浅显易懂的方式,探讨云原生的核心概念,并通过实际代码示例,展示如何在云平台上部署和管理微服务。
|
22天前
|
机器学习/深度学习 人工智能 前端开发
移动应用的架构演变与未来趋势
【10月更文挑战第20天】移动应用开发经历了从简单到复杂的演进过程,其架构设计也随着技术进步和用户需求的变化而不断演化。本文将探讨移动应用架构的变迁,分析当前流行的架构模式,并预测未来的发展趋势,旨在为开发者提供架构设计的参考和启示。
28 0
|
2月前
|
机器学习/深度学习 人工智能 云计算
后端架构的演变与未来趋势
本文深入探讨了后端架构的历史演变和未来发展趋势,从单体应用到微服务架构,再到无服务器架构,分析了每种架构的特点、优势及应用场景。同时,展望了未来可能的发展方向,如人工智能在后端开发中的应用、云计算技术的深度融合等,为后端开发者提供了宝贵的参考和启示。