Linux内核3.11的socket busy poll机制避免睡眠切换

简介:
Linux的网络协议栈非常独立,上下通过两个接口分别和用户态以及设备相连,也可以看作是北向和南向接口...北向通过socket接口,南向通过 qdisc接口(你可以认为是上层的netdev queue,对于接收接口,NAPI的poll队列则是另一个例子),不管是socket还是qdisc,都是基于队列来管理的,也就是说,三个部分是独 立的,socket只能看到读写队列,而看不到协议栈本身,socket在读一个数据的时候,它取的是队列里面的数据,至于说这个数据是谁放进去的,它并 不知道,是不是协议栈放进去的,它也不必验证。
       socket隔离了用户进程和协议栈,RX/TX queue隔离了协议栈和设备驱动。
       这种隔离方式给编程和设计带来了简便,然而却不利于性能。
       Linux的RPS设计,旨在让一个CPU既处理数据包的协议栈接收流程(软中断内核线程上下文,或者任意上下文的软中断处理),又运行用户态处理该数据 包的进程。我说这种设计有利也有弊,如果仅仅是旨在提高cache利用率,那么这种设计是对的,但是有没有想过别的情况,如果一个CPU在NET RX软中断处理的最后将一个skb推到了一个socket队列,并试图唤醒等待进程,那么它下一步该干些什么呢?实际上它下一步应该返回设备,继续去 poll下一个skb,然而RPS的设计不是这样,RPS的设计旨在希望让该CPU继续处理用户态进程....这就必然要进行一次进程切换以及用户/内核 态的切换,虽然服务器的CPU cache利用率提高了,但是协议栈处理相关的CPU cache利用率反而降低了。事实上,CPU cache是否在进程切换以及用户/内核态切换后刷新,这个是体系结构相关的,并不是说所有的体系结构都能带来好的结果。
       必须做进一步的测试。
       我觉得最好的办法就是用户进程和内核的NET RX软中断处在不同的CPU核心上,然而这两个CPU核心共享二级cache或者三级cache。
       ...
       Linux内核随之发展出了更好的方案,那就是突破上述的独立三大部分,让socket直接深入到设备层直接poll skb!!注意,这是一个poll操作,并不是让socket直接处理协议栈流程。socket直接poll的意思是说,socket在队列中没有读到数 据包的时候,并不是睡眠,然后等待NET RX内核线程将数据包放入队列后将其唤醒,而是直接去问设备:现在有数据包吗?如果有,我直接带走它们去协议栈,而不需要你送它们去了。这是一种“拉”的 方式,而不是以往的那种“推”的方式,拉和推的区别在于,对于接收者,拉是同一个实体,是主动的,而推则是被动的。
       这就解决了RPS试图解决却又没有完美解决的问题。这种机制叫做busy poll。
       RPS试图让软中断处理完数据包后,切换到用户进程,此时软中断将间歇,然后数据包中断后又要切回来...busy poll就不是这样,它直接绕过了软中断这个执行体,直接靠socket自身所在的执行体来主动拉取数据包进行处理。避免了大量的任务交接导致的切换问 题。
       我不晓得对于转发的情况,是否也能采用busy poll的方式来提高性能,这需要测试。以上的阐述只是理想情况,真实情况是,socket可能替别的socket从设备拉取了一个数据包,甚至这个数据 包只是转发的,不与任何socket关联...因为数据包只有经过标准的路由以及四层处理后,才能和一个具体socket关联,在设备驱动层,指望找到这 个关联是徒劳且无望的!不管怎么说,控制权在用户自己手中,凭概率来讲,如果你的设备中大量的数据包都是转发包,就不要开启这个功能,如果你的进程拥有少 量的socket处理大量的数据包,那就开启它,不管怎样,这只是一个用法和配置的问题,何时开启,以及份额设置多少,需要一个事前采样的过程。

       今天早上起太早,写了两篇随笔,所以也就没出去溜,现在快七点了,小小和孩她妈还睡着呢,我准备下去上班了....



 本文转自 dog250 51CTO博客,原文链接:http://blog.51cto.com/dog250/1671877

相关文章
|
1天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
29 15
|
20天前
|
存储 编译器 Linux
动态链接的魔法:Linux下动态链接库机制探讨
本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。
277 21
|
27天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
27天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
28天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
28天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
30天前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
36 3
|
2月前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
42 6
|
1月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
2月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
35 2