Linux内核RCU(Read Copy Update)锁简析-前传

简介:

如果你用Linux perf tool的top命令做热点纠察时,你会发现,前10名嫌疑犯里面肯定有好几个都是锁!
在进行并行多处理时,不可 避免地会遇到锁的问题,这是不可避免的,因为这一直以来也许是保护共享数据的唯一方式,被保护的区域就是临界区。而我们知道,锁的开销是巨大的,因为它不 可避免地要么等待,要么让别人等待,然而这并不是开销的本质,开销的本质在于很多锁都采用了“原子操作”这么一个技术,如此一个原子操作会对总线或者 cache一致性造成很大的影响,比如要对一个变量进行原子加1,不要认为它很简单,其实背后会有很多不希望的操作,在某架构的处理器上,首先要LOCK 总线,这意味着LOCK不解除期间,其它处理器不能访存(起码是内存的某些区域),可能还要涉及到刷cache,或者触发cache一致性操作...这还 不算最猛的打击,在某些架构上,存在内存栅栏,它会刷掉CPU的流水线,刷掉cache,几乎所有的为优化而设计的方案全部失效,当然,这是代价,收益就 是你保护了临界区。
       你要保护临界区,你要付出代价,这个代价如果用复杂的锁来支付的话,未免有点大。非要这样子吗?也许是你的数据结构设计地不好,也许是你的代码流设计地不 好,比如多个线程同时读共享数据,两个线程一个读一个写,能否采用环形缓冲区来减轻竞争呢?事实上很多诸如网卡,硬盘等共享外设驱动程序都是这么玩的,代 码只要保证读指针和写指针不相互超越即可,这样可以最小化锁的使用,当然这只是一个非常简单的例子。

       设计好的数据结构和代码流程是一方面,但是这个层次不够抽象,更好的方式就是设计一种更加优化的锁。读写锁这种不对称的锁应对读者多写者少的情景是一种优 化的锁,它对读者的优待就是无需等待,只要没有写者就可以直接读,否则才等待。而对于写者,它需要等待所有读者的完成。这种读写的实现可以依赖于另一种叫 做自旋锁的机制实现,我的一个实现如下所示:

typedef struct {

    spinlock_t *spinlock;

    atomic_t readers;

}rwlock_t;
static inline void rdlock(rwlock_t *lock)
{
    spinlock_t *lck = lock->spinlock;
    if (likely(!lock->readers++))
        spin_lock(lck);
}

static inline void rdunlock(rwlock_t *lock)
{
    spinlock_t *lck = lock->spinlock;
    if (likely(!--lock->readers))
        spin_unlock(lck);
}

static inline void wrlock(rwlock_t *lock)
{
    spin_lock(lock->spinlock);
}

static inline void wrunlock(rwlock_t *lock)
{
    spin_unlock(lock->spinlock);
}


很OK,不是吗?但是最好的方案就是彻底抛弃锁,彻底不用锁。
       我曾经在设计我的转发表的时候,为了降低lock开销,我为每个CPU复制了一个局部的本地转发表,这些转发表是一致的,由路由表生成,心想这就可以避免 竞争,然而,这些转发表总要面临更新问题,如何更新它们??我最初采用的方式是采用IPI(处理器间中断),在处理函数中,停掉处理线程,然后更新数据, 最后开启线程,这样可以在处理期间避免lock。十分合理,不是吗?可是我想复杂了。
       仔细看看读写锁的写锁,它鲁莽地进行了标准锁定操作,而读锁也是在第一个读者进来的时候采用了锁定动作。这些锁定操作导致的等待可以避免吗?看看我原始的 IPI方案,停掉线程是为了防止读者读到错误的数据,实际上是将主动将执行流让位给了写者,写者先来,然后再看看读写锁中的写者,发现有读者存在时,没有 主动地让位,而只是被动地等待,这种等待很无聊!
       能否将我的方式和读写锁的方式结合呢?
       怎么结合?按照刚刚的思路,无非就是为写者是被动等待还是抢先读者做一个决策!但是它还有一个别的选择,那就是先按照自己的流程写数据,不是写原始数据, 而是写原始数据的一份拷贝(伟大的写时拷贝),然后将这件事挂在一个未竟事务链表上直接走人,等待系统发现所有的读者都完成时用链表上的数据逐个覆盖原始 数据。这是个多么好的结合,这就是伟大的RCU锁。读者的代价就是简单地标示一下有人读即可,而写者也无需等待持锁,直接写副本,写完走人,后来的事就交 给系统了....



 本文转自 dog250 51CTO博客,原文链接:http://blog.51cto.com/dog250/1673574
相关文章
|
9天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
42 4
|
4天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
12天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
38 9
|
10天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
32 6
|
11天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
30 5
|
12天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
11天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
30 2
|
消息中间件 缓存 网络协议
Linux 锁与进程间通信
本文整理了 Linux 内核中锁与进程间通讯的相关知识。
|
9天前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
74 6
|
10天前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
41 3
下一篇
无影云桌面