又一道perl数据分析题

简介:

一文件,类似以下格式

要求,利用你熟悉的语言取出其中对应的IP与其对应的掩码

perl code:

这个用了引用与解引用

运行结果



本文转自dongfang_09859 51CTO博客,原文链接:http://blog.51cto.com/hellosa/486614,如需转载请自行联系原作者

相关文章
|
8月前
|
数据采集 数据可视化 数据挖掘
浅谈Python在数据分析中的应用
在当前数据驱动的时代,Python已经成为数据分析不可或缺的工具之一。本文将探讨Python在数据分析领域的应用,特别是如何利用Python进行数据处理、分析以及可视化。我们将通过实际案例,展示Python强大的数据处理能力和灵活的数据分析功能,以及如何使用Python的各种库,如Pandas、NumPy、Matplotlib和Seaborn等,来简化数据分析流程,从而提高分析效率和质量。这篇文章旨在为初学者提供一个关于Python在数据分析中应用的全面介绍,帮助他们快速入门并应用于实际项目中。
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
Python中的数据分析与可视化技术探索
数据分析与可视化在当今信息化时代扮演着愈发重要的角色。Python作为一种强大的编程语言,提供了丰富的库和工具,使得数据分析与可视化变得更加高效和灵活。本文将探讨Python中常用的数据分析与可视化技术,包括数据准备、数据分析和可视化展示等方面,并结合实例演示其应用,帮助读者更好地理解和运用这些技术。
|
3月前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
32 1
|
3月前
|
自然语言处理 搜索推荐 数据挖掘
Python 数据分析10
除了常用的Python数据挖掘建模库外,还有许多其他库也非常实用,例如 jieba、SciPy、OpenCV 和 Pillow 等。其中,jieba 是一个广泛使用的中文分词库,支持多种编程语言,包括 Python、R 和 C++,并且提供了三种分词模式:精确模式、全模式和搜索引擎模式。此外,jieba 还具备词性标注、添加自定义词典及关键词提取等功能,在 GitHub 社区中有较高讨论度,并拥有丰富的实例资源。
38 5
|
3月前
|
数据采集 数据挖掘 数据库
你还不会用python进行数据分析吗
你还不会用python进行数据分析吗
42 0
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python在数据分析中的应用及优势
本文探讨了Python在数据分析领域的重要性和优势,介绍了Python在处理大规模数据、构建数据可视化和实现机器学习模型等方面的应用案例,展示了Python作为数据分析利器的强大功能。
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python在数据分析中的应用及其优势
数据分析在当今信息化时代具有重要意义,而Python作为一种简洁而强大的编程语言,在数据分析领域有着突出的优势。本文将介绍Python在数据分析中的应用及其优势,包括其丰富的库、易读的语法和广泛的社区支持,以及如何利用Python进行数据处理、可视化和建模。
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据分析中的应用与优势
【2月更文挑战第7天】随着大数据时代的到来,数据分析逐渐成为各行各业的重要工具。本文探讨了Python作为一种强大的数据分析工具在实际应用中的优势和特点,介绍了其在数据清洗、可视化、机器学习等方面的应用,展示了Python在数据分析领域的重要性和灵活性。
|
5月前
|
数据可视化 数据挖掘 Python
Python中的数据可视化:探索性数据分析的利器
【8月更文挑战第29天】在数据科学的世界里,数据可视化是理解复杂数据集的关键。本文将引导你通过Python的强大库,如Matplotlib和Seaborn,来揭示数据背后的故事。我们将一起探索如何利用这些工具进行有效的数据可视化,从而促进对数据的深入理解和分析。文章不仅提供代码示例,还将讨论如何选择恰当的图表类型、调整视觉元素以及如何解释图表结果,旨在帮助初学者建立坚实的数据可视化基础。
|
8月前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析的5个必备技巧
【5月更文挑战第9天】本文介绍了Python数据分析的五个关键技巧:1) 使用Pandas进行数据处理和清洗;2) 利用NumPy进行高效数值计算;3) 通过Matplotlib和Seaborn创建可视化图表;4) 使用Scikit-learn执行机器学习任务;5) 在Jupyter Notebook中进行交互式分析和文档分享。这些技巧能提升数据分析的效率和准确性。