运行ORB-SLAM笔记_使用篇(二)

简介: 1. 编译完成之后就可以使用了,按照说明我们可以知道,首先开启roscore 再打开一个命令窗口使用命令:rosrun ORB_SLAM ORB_SLAM PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE 其中ORB_SLAM PATH_TO_VOCABULARY:是一种树型数据结构模型,ORB-SLAM里面主要用来做回访(loop-closure)检 测,对于不同数据集严格来说需要离线单独处理生成,但一般成像条件都差不多所以对于不同图像数据集可以使用相同的词汇数据文件(相当于一个数据库文件,方 便快速保存和查询视觉特征信息)。

1. 编译完成之后就可以使用了,按照说明我们可以知道,首先开启roscore

再打开一个命令窗口使用命令:rosrun ORB_SLAM ORB_SLAM PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

其中ORB_SLAM PATH_TO_VOCABULARY:是一种树型数据结构模型,ORB-SLAM里面主要用来做回访(loop-closure)检 测,对于不同数据集严格来说需要离线单独处理生成,但一般成像条件都差不多所以对于不同图像数据集可以使用相同的词汇数据文件(相当于一个数据库文件,方 便快速保存和查询视觉特征信息)。虽然是TXT文件,打开就是许多数字而已。(https://answers.cosrobotics.org/question/184/guan-yu-orb_slamyun-xing-yi-ji-rgb-d-datasetde-xiang-ji-can-shu-de-wen-ti/)

PATH_TO_SETTINGS_FILE:这个很容易理解就是相机的内参;

然后我们输入命令如图所示:

我们查看ORB_SLAM节点的topic

salm@salm:~$ rtopic  list -v
Published topics:
 * /ORB_SLAM/Map [visualization_msgs/Marker] 1 publisher
 * /ORB_SLAM/Frame [sensor_msgs/Image] 1 publisher
 * /rosout [rosgraph_msgs/Log] 1 publisher
 * /tf [tf2_msgs/TFMessage] 1 publisher
 * /rosout_agg [rosgraph_msgs/Log] 1 publisher

Subscribed topics:
 * /camera/image_raw [sensor_msgs/Image] 1 subscriber
 * /rosout [rosgraph_msgs/Log] 1 subscriber

(1)知道该节点是订阅/camera/image_raw这个topic,然后被 ORB_SLALM 节点处理后的图像帧被发布到话题 ORB_SLAM/Frame 中,可以通过使用 image_view 功能包来查看

rosrun image_view image_view image:=/ORB_SLAM/Frame _autosize:=true

(2)ORB_SLAM 节点处理得到的地图被发布到话题 /ORB_SLAM/Map 中,摄像机当前位姿和地图全局坐标原点通过 /tf 功能包分别发布到话题 /ORB_SLAM/Camera 和话题 /ORB_SLAM/World 中,通过运行 rviz 功能包来查看地图:

rosrun rviz rviz -d Data/rviz.rviz

这都是我们在订阅了/camera/image_raw才能看到的试验结果,那么我们从那里得到/camera/image_raw这个节点呢?

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

 那么我就尝试首先发布一个经典的图片topic 给ORB_SLAM节点:

(1)首先进入自己的工作空间catkin_ws,然后进入src,使用catkin_pkg_create命令创建我的功能包

    参考           http://wiki.ros.org/image_transport/Tutorials   

                     http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29

             $ cd catkin_ws/
             $ cd src/
             $ catkin_create_pkg learning_image_transport image_transport cv_bridge
             $ cd ..
             $ catkin_make
             $ cd src
             $ vi my_publisher.cpp
输入:
#include <ros/ros.h>                       
#include <image_transport/image_transport.h>
#include <opencv2/highgui/highgui.hpp>
#include <cv_bridge/cv_bridge.h>    //非常有用的功能包,实现ROS与OPENCV图像的转换

int main(int argc, char** argv)
{
  ros::init(argc, argv, "image_publisher");
  ros::NodeHandle nh;
  image_transport::ImageTransport it(nh);
  image_transport::Publisher pub = it.advertise("camera/image_raw", 1);  //这里我们发布的主题要与ORB_SLAM节点订阅的话题一致

  //cv::Mat image = cv::imread(argv[1], CV_LOAD_IMAGE_COLOR);
  cv::Mat image = cv::imread("/home/salm/myopencv/lena.jpg",1);  //写入自己要载入的图像位置
  cv::waitKey(30);
  sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", image).toImageMsg();    //这一句就是把图像读入并转为opencv可处理的图像

  ros::Rate loop_rate(5);
  while (nh.ok()) {
    pub.publish(msg);
    ros::spinOnce();
    loop_rate.sleep();
  }
}

之后在CMakefile.txt文件添加

add_executable(my_publisher src/my_publisher.cpp)
target_link_libraries(my_publisher ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})

进行catkin_make即可我们运行查看一下实现的结果:

                                                       $ rosrun learning_image_transport  my_publisher

                 $  rosrun ORB_SLAM ORB_SLAM Data/ORBvoc.txt Data/Settings.yaml

                                                       $  rosrun image_view image_view image:=/ORB_SLAM/Frame _autosize:=true

                                                                  

就是这个结果,因为我也是一边学习,一边实现,我自己也不知道里面使用的算法,具体为什么会这样,这也是不断学习的原因

(2)那现在我再发布一个动态的topic 用摄像头捕捉的话题发布给ORB_SLAM,看看实现结果:

 与之前的一样,仍然在src 文件下     $ vi  image_converter.cpp

输入

#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include <opencv2/imgproc/imgproc.hpp> //include the headers for OPENCV's image processing and GUI module 
#include <opencv2/highgui/highgui.hpp>  //

static const std::string OPENCV_WINDOW = "Image window";   //define show image gui

class ImageConverter
{
  ros::NodeHandle nh_;                    //define Nodehandle
  image_transport::ImageTransport it_;    //use this to create a publisher or subscriber
  image_transport::Subscriber image_sub_; //
  image_transport::Publisher image_pub_;
  
public:
  ImageConverter()
    : it_(nh_)
  {
    // Subscrive to input video feed and publish output video feed
    image_sub_ = it_.subscribe("/usb_cam/image_raw", 1, 
      &ImageConverter::imageCb, this);
    //image_pub_ = it_.advertise("/image_converter/output_video", 1);
    image_pub_ = it_.advertise("/camera/image_raw", 1);
    cv::namedWindow(OPENCV_WINDOW);    //Opencv HighGUI calls to create/destroy a display window on start-up / shutdon
  }

  ~ImageConverter()
  {
    cv::destroyWindow(OPENCV_WINDOW);
  }

  void imageCb(const sensor_msgs::ImageConstPtr& msg)
  {
    cv_bridge::CvImagePtr cv_ptr;
    try
    {
      cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
    }
    catch (cv_bridge::Exception& e)
    {
      ROS_ERROR("cv_bridge exception: %s", e.what());
      return;
    }
    cv::imshow(OPENCV_WINDOW, cv_ptr->image);
    cv::waitKey(3);
    
    // Output modified video stream
    image_pub_.publish(cv_ptr->toImageMsg());
  }
};

int main(int argc, char** argv)
{
  ros::init(argc, argv, "image_converter");
  ImageConverter ic;
  ros::spin();
  return 0;
}

 同理 添加

                           add_executable(image_converter src/image_converter.cpp)
                           target_link_libraries(image_converter ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})

当然前提是电脑有摄像头,并且下载了USB摄像头的驱动:https://github.com/bosch-ros-pkg/usb_cam

输入以下命令:                             

                                                       $  roslaunch usb_cam usb_cam-test.launch

(在启动摄像头可能会遇到一些问题吧,比如出现  Webcam: expected picture but didn't get it...就要修改launch文件下的 "pixel_format",比如有mjpeg ,yuyv等)

                                                       $  rosrun learning_image_transport image_converter

                 $  rosrun ORB_SLAM ORB_SLAM Data/ORBvoc.txt Data/Settings.yaml

                                                       $  rosrun image_view image_view image:=/ORB_SLAM/Frame _autosize:=true

 


版权所有,转载请注明出处 http://www.cnblogs.com/li-yao7758258/p/5912663.html
相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
ROS入门实践
本课程将基于基础设施即代码 IaC 的理念,介绍阿里云自动化编排服务ROS的概念、功能和使用方式,并通过实际应用场景介绍如何借助ROS实现云资源的自动化部署,使得云上资源部署和运维工作更为高效。
相关文章
|
4月前
|
存储 缓存 资源调度
# Qwen3-8B 与 ChatGPT-4o Mini 的 TTFT 性能对比与底层原理详解
Qwen3-8B 是通义实验室推出的80亿参数模型,支持32K上下文,采用FP8量化和CUDA优化,提升推理效率;ChatGPT-4o Mini 为OpenAI轻量模型,参数约3.8B,支持128K上下文,通过蒸馏技术实现低延迟。两者在TTFT、长文本处理和部署优化上各有优势,适用于不同应用场景。
656 9
|
4月前
|
人工智能 Java API
后端开发必看:零代码实现存量服务改造成MCP服务
本文介绍如何通过 **Nacos** 和 **Higress** 实现存量 Spring Boot 服务的零代码改造,使其支持 MCP 协议,供 AI Agent 调用。全程无需修改业务代码,仅通过配置完成服务注册、协议转换与工具映射,显著降低改造成本,提升服务的可集成性与智能化能力。
1241 1
|
9月前
|
存储 JSON API
小红书笔记评论数据接口(小红书 API 系列)
小红书凭借庞大的用户群体和丰富的内容生态,成为重要的数据来源。其笔记评论数据对企业了解市场需求、优化产品策略等具有极高价值。为高效、合法获取数据,可使用小红书笔记评论数据接口。该接口通过HTTP请求获取指定笔记的评论内容、时间、昵称等信息,返回JSON格式数据。开发者可利用Python的requests库发送GET请求并处理响应,实现批量收集评论数据,支持舆情监测、竞品分析等业务场景。
1128 5
|
8月前
|
人工智能 搜索推荐 物联网
线上共学 | Mac本地玩转大模型
本文介绍如何在Mac本地部署和使用大模型,包括基础运行、多模态扩展、交互优化、知识增强、定制进化等技术链路,并提供Ollama、Stable Diffusion、LM-Studio等工具的详细操作指南。
1703 8
关闭手机卡的流量的方法有哪些?
关闭手机卡的流量的方法主要有以下几种:
vs code常见的查找快捷键大全
【11月更文挑战第1天】本文介绍了 VS Code 中的基本查找和替换操作,包括在当前文件中查找(Ctrl + F)、查找替换(Ctrl + H)、查找下一个(F3)和查找上一个(Shift + F3)。还涵盖了在多个文件中查找(Ctrl + Shift + F)和查找替换(Ctrl + Shift + H),以及符号查找相关操作,如转到符号(Ctrl + T)和在文件中查找符号(Ctrl + Shift + O)。这些快捷键和功能帮助用户高效地管理和编辑代码。
1907 2
springboot(若依)多模块获取yml属性
springboot(若依)多模块获取yml属性
528 0
|
前端开发 Java 应用服务中间件
Spring框架第六章(SpringMVC概括及基于JDK21与Tomcat10创建SpringMVC程序)
Spring框架第六章(SpringMVC概括及基于JDK21与Tomcat10创建SpringMVC程序)
|
前端开发 Java API
阿里云百炼模型入门篇-大语言模型
本文主要介绍如何快速的通过阿里云百炼,带你如何快速入门通义千问系列大语言模型。
2584 6