这里有一个机器学习模型,它知道2.2亿欧元的内马尔值不值得买

简介:
本文来自AI新媒体量子位(QbitAI)

 内马尔2.2亿欧元转换大巴黎

阿森纳主帅温格在位20载,什么样优秀的球员没见过,但现今他也是越来越看不懂转会市场了。

温格感叹:不是阿森纳不买人,实在是现今市场上的球员贵得离谱。

此言其实不虚。

 120万英镑的坎通纳帮助弗格森开创红魔帝国

1992年,弗格森买来开创曼联红魔历史的“国王”坎通纳,才花费了120万英镑。

但等到2016年,同样身为曼联主帅的穆里尼奥,买来博格巴却花费了8900万英镑——这位法国人跟前辈坎通纳的能力、作用还不能相提并论。

所以经济通胀真如此疯狂吗?恐怕没有。但球员确实越来越贵了。

就在行将结束的这个夏天,内马尔转换花费1.98亿英镑,卢卡库7500万英镑,莫拉塔5800万英镑……

而且这还只是转会身价,未包括球员的薪资。

所以球员到底“值多少”?有没有可能按照球员的能力数据排出薪资结构?让各队都买到最合适的球员。

比如财大气粗皇家马德里,只按最贵的11人来买;阿森纳则在每个位置上都补充排名第4的球员;利物浦就再加个筛选器——球员排名靠前还不行,还得是英吉利户口。

有没有这样的模型系统?现在有了!

密歇根劳伦斯科技大学的一个机器学习项目,正在打造这样的模型,按照球员能力给出薪资预估。

 同名电影《点球成金》

机器学习搞定球员身价

此前,知名作家迈尔克-路易斯的作品《点球成金》中,曾讲述过棒球运动中使用机器学习的案例:奥克兰运动者队总经理,运用数据模型,成功完成了球队转型。

尽管这位总经理可以调用的资金极其有限,但他让机器帮他找到了各个位置上的“最佳人选”——甚至对于谁更适合哪个位置,这个机器也提出了比主教练更好的安排建议。

现在,这个来自密歇根劳伦斯科技大学的机器学习项目,原理正是用机器学习和数据驱动,来打造一个基于职业足球运动员的算法模型。

这个模型中,在欧洲效力的6082名各不相同的球员,会按照球场上的技能被给出“身价”排名,身价最高的球员和身价最低的球员,在该模型计算后一目了然。

该项目的参与者Lior说,现在体育竞技中,比较各个运动员的数据是最常见不过的事儿。不过对于足球运动员来说,他们的能力体现的是各项数据的综合。

在这个计算足球远动员实力的模型中,有55种数据作为标签维度。如果旨在比较球员的“合理薪水”,这个模型会根据具体球员的场上表现,再结合所有球员的表现来估算。

也就是说,你在场上踢得相对有多好,你的身价也就会相应得到展现。

模型数据维度

那如何算踢得好呢?这个模型的55个评价维度,包括有效射门数、有效传球数、场上侵略性、速度和控球等。

实际上,这些数据主要来自FIFA专家的评价——这可能让数据不尽客观,所以这个项目的研究者,最终希望通过多达55种不同维度,来增强整个项目的“客观性”。

当然,最后的结果也与模型研究者的假设不谋而合。他们通过研究发现,在多数情况下,球员的技能素质和他们的身价是密切相关的。

可能也会存在一些明星球员的例外现象,过高或被低估,但排名是基本靠谱的。比如在2016-2017赛季,系统给出的技能&薪资第一名是巴萨的梅西,而球星中垫底的是刚刚转会曼城的贝尔纳多·席尔瓦。

 “万人迷”贝克汉姆

球场外的变量

另外,该项目研究者还指出,这个机器模型并没有考虑场外因素,比如足球运动员的场外商业价值和商业收入——在当前竞技体系中,球员的身价合同,不仅包含场上表现,还可能涉及在商品销售、转播权益、粉丝数量拓展等维度的能力。

也就是说,这个机器学习模型,现在还只能当做一种参考,还不能将场外号召力也计入工资体系中。不过研究者称,无论是足球迷还是非足球迷,这个机器学习模型,都能为未来商品定价提供参考。

这可能也是未来的家常便饭,人类创造的机器模型,正在评估人类应得的合理薪水、加薪幅度和奖金等。

这个模型的研究者还坚信,机器的计算方法,远比人类自身的判断要客观,所以可以由机器去解释为什么梅西的工资高,武磊的工资没那么高——机器模型的评价体系就放在那里,除非武磊的表现好过梅西,不然现在的工资结构就是合理的。

这一天估计也是教授温格最愿意看到的。球员应该用实际行动赢得更多的薪资,而不是靠转会出走。俱乐部也应该把更多重心放下青训,而不是通过土豪式的“买买买”解决问题。

大家按场上实力说话。

除非,你长了一张“万人迷”的脸,靠发型也能让俱乐部愿意为你多开一些薪水。或者实在厌倦了欧洲战场,转身成为中超名宿。

——  ——

本文作者:李根 
原文发布时间:2017-08-07 
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
32 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
23天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
79 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
49 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
68 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
66 6
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。