△ 内马尔2.2亿欧元转换大巴黎
阿森纳主帅温格在位20载,什么样优秀的球员没见过,但现今他也是越来越看不懂转会市场了。
温格感叹:不是阿森纳不买人,实在是现今市场上的球员贵得离谱。
此言其实不虚。
△ 120万英镑的坎通纳帮助弗格森开创红魔帝国
1992年,弗格森买来开创曼联红魔历史的“国王”坎通纳,才花费了120万英镑。
但等到2016年,同样身为曼联主帅的穆里尼奥,买来博格巴却花费了8900万英镑——这位法国人跟前辈坎通纳的能力、作用还不能相提并论。
所以经济通胀真如此疯狂吗?恐怕没有。但球员确实越来越贵了。
就在行将结束的这个夏天,内马尔转换花费1.98亿英镑,卢卡库7500万英镑,莫拉塔5800万英镑……
而且这还只是转会身价,未包括球员的薪资。
所以球员到底“值多少”?有没有可能按照球员的能力数据排出薪资结构?让各队都买到最合适的球员。
比如财大气粗皇家马德里,只按最贵的11人来买;阿森纳则在每个位置上都补充排名第4的球员;利物浦就再加个筛选器——球员排名靠前还不行,还得是英吉利户口。
有没有这样的模型系统?现在有了!
密歇根劳伦斯科技大学的一个机器学习项目,正在打造这样的模型,按照球员能力给出薪资预估。
△ 同名电影《点球成金》
机器学习搞定球员身价
此前,知名作家迈尔克-路易斯的作品《点球成金》中,曾讲述过棒球运动中使用机器学习的案例:奥克兰运动者队总经理,运用数据模型,成功完成了球队转型。
尽管这位总经理可以调用的资金极其有限,但他让机器帮他找到了各个位置上的“最佳人选”——甚至对于谁更适合哪个位置,这个机器也提出了比主教练更好的安排建议。
现在,这个来自密歇根劳伦斯科技大学的机器学习项目,原理正是用机器学习和数据驱动,来打造一个基于职业足球运动员的算法模型。
这个模型中,在欧洲效力的6082名各不相同的球员,会按照球场上的技能被给出“身价”排名,身价最高的球员和身价最低的球员,在该模型计算后一目了然。
该项目的参与者Lior说,现在体育竞技中,比较各个运动员的数据是最常见不过的事儿。不过对于足球运动员来说,他们的能力体现的是各项数据的综合。
在这个计算足球远动员实力的模型中,有55种数据作为标签维度。如果旨在比较球员的“合理薪水”,这个模型会根据具体球员的场上表现,再结合所有球员的表现来估算。
也就是说,你在场上踢得相对有多好,你的身价也就会相应得到展现。
模型数据维度
那如何算踢得好呢?这个模型的55个评价维度,包括有效射门数、有效传球数、场上侵略性、速度和控球等。
实际上,这些数据主要来自FIFA专家的评价——这可能让数据不尽客观,所以这个项目的研究者,最终希望通过多达55种不同维度,来增强整个项目的“客观性”。
当然,最后的结果也与模型研究者的假设不谋而合。他们通过研究发现,在多数情况下,球员的技能素质和他们的身价是密切相关的。
可能也会存在一些明星球员的例外现象,过高或被低估,但排名是基本靠谱的。比如在2016-2017赛季,系统给出的技能&薪资第一名是巴萨的梅西,而球星中垫底的是刚刚转会曼城的贝尔纳多·席尔瓦。
△ “万人迷”贝克汉姆
球场外的变量
另外,该项目研究者还指出,这个机器模型并没有考虑场外因素,比如足球运动员的场外商业价值和商业收入——在当前竞技体系中,球员的身价合同,不仅包含场上表现,还可能涉及在商品销售、转播权益、粉丝数量拓展等维度的能力。
也就是说,这个机器学习模型,现在还只能当做一种参考,还不能将场外号召力也计入工资体系中。不过研究者称,无论是足球迷还是非足球迷,这个机器学习模型,都能为未来商品定价提供参考。
这可能也是未来的家常便饭,人类创造的机器模型,正在评估人类应得的合理薪水、加薪幅度和奖金等。
这个模型的研究者还坚信,机器的计算方法,远比人类自身的判断要客观,所以可以由机器去解释为什么梅西的工资高,武磊的工资没那么高——机器模型的评价体系就放在那里,除非武磊的表现好过梅西,不然现在的工资结构就是合理的。
这一天估计也是教授温格最愿意看到的。球员应该用实际行动赢得更多的薪资,而不是靠转会出走。俱乐部也应该把更多重心放下青训,而不是通过土豪式的“买买买”解决问题。
大家按场上实力说话。
除非,你长了一张“万人迷”的脸,靠发型也能让俱乐部愿意为你多开一些薪水。或者实在厌倦了欧洲战场,转身成为中超名宿。
—— 完 ——