Ackerman函数在许多讲解递归的书中都提到,但似乎又对解题没有太大的意义,暂时不知道了。不过这个东西,是一个数学知识点,暂时收藏于此吧。
查了一下维基百科和百度百科,表面上两个定义不一样,仔细推敲其实是一样的。(维基百科里面A(m,n)和百度百科里面A(n,m)当中的参数n、m代表含义是一样的,只是它们两个递归函数的参数的顺序写的不一样而已。)
先看Fibonacci数列
Fibonacci数列是一个非常重要,应用非常广的知识点,其递归定义如下:
(百度百科:http://baike.baidu.com/link?url=hSbCp3OLCl79y1H_fDWugAniyMFuEK7IlB2KB--g2oLAMkcWvv_3wkJRjClkq2cg)
递推公式
斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:
显然这是一个线性递推数列。
通项公式
下面看看Ackerman函数:
Fibonacci数列可以写出通项公式,就是用非递归的方式去下定义。但并非一切的递归函数都能用非递归方式去定义。下面讲一个双递归函数——Ackerman函数,它的复杂性就比Fibonacci数列递归公式要复杂多了。
百度百科:Ackerman函数 (其实下面百度百科关于Ackerman函数的描述大体是抄自王晓东的《算法设计与分析(第2版)》清华大学出版社第2章递归与分治策略例题2.3 。)
当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数.当两个连续函数都趋于无穷时,我们常用洛必达法则来比较它们趋向无穷的快慢。函数的阶越高,它趋向无穷的速度就越快。在定义在正整数域上的函数中,n!趋向于正无穷的速度非常快,所以在算法设计中如果出现这样的时间复杂度就太糟糕了。logn趋向无穷的速度则非常慢。
以此类推,,其中2的层数为n。
A(n,4)的增长速度已经变得难以想象的快,以至于不能写出一个通项公式来表示这一函数。
维基百科:Ackerman函数的描述
定义如下:
乍一看,这个定义和上面百度百科给的定义不太一样。仔细分析,其实它们两个A()函数当中的m、n含义没变,只是参数当中顺序刚好相反而已。
下面是网友的代码:(来源:http://blog.csdn.net/gpengtao/article/details/7438587)
int ack(int m,int n) { if(m == 0) return n+1; else if(n == 0) return ack(m-1,1); else return ack(m-1,ack(m,n-1)); }