sklearn.metrics.auc

简介:

AUC(area under the curve)ROC曲线下方的面积

auc(x, y, reorder=False)

    Compute Area Under the Curve (AUC) using the trapezoidal rule

    

    This is a general function, given points on a curve.  For computing the

    area under the ROC-curve, see :func:`roc_auc_score`.  For an alternative

    way to summarize a precision-recall curve, see

    :func:`average_precision_score`.

    

    Parameters

    ----------

    x : array, shape = [n]

        x coordinates.

    y : array, shape = [n]

        y coordinates.

    reorder : boolean, optional (default=False)

        If True, assume that the curve is ascending in the case of ties, as for

        an ROC curve. If the curve is non-ascending, the result will be wrong.

    

    Returns

    -------

    auc : float

    

    Examples

    --------

    >>> import numpy as np

    >>> from sklearn import metrics

    >>> y = np.array([1, 1, 2, 2])

    >>> pred = np.array([0.1, 0.4, 0.35, 0.8])

    >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)

    >>> metrics.auc(fpr, tpr)

    0.75

    

    See also

    --------

    roc_auc_score : Compute the area under the ROC curve

    average_precision_score : Compute average precision from prediction scores

    precision_recall_curve :

        Compute precision-recall pairs for different probability thresholds

目录
相关文章
|
4月前
|
TensorFlow 算法框架/工具
【Tensorflow+Keras】tf.keras.backend.image_data_format()的解析与举例使用
介绍了TensorFlow和Keras中tf.keras.backend.image_data_format()函数的用法。
52 5
|
7月前
ImportError: cannot import name ‘compare_mse‘ from ‘skimage.measure‘
ImportError: cannot import name ‘compare_mse‘ from ‘skimage.measure‘
111 0
sklearn.metric.accuracy_score评价指标介绍和使用
sklearn.metric.accuracy_score评价指标介绍和使用
256 0
sklearn.metrics中micro和macro的区别
先看以下示例,区分micro和macro的区别,这里直接调用sklearn封装好的接口
103 0
|
PyTorch 算法框架/工具 索引
详细介绍torch中的from torch.utils.data.sampler相关知识
PyTorch中的torch.utils.data.sampler模块提供了一些用于数据采样的类和函数,这些类和函数可以用于控制如何从数据集中选择样本。下面是一些常用的Sampler类和函数的介绍: Sampler基类: Sampler是一个抽象类,它定义了一个__iter__方法,返回一个迭代器,用于生成数据集中的样本索引。 RandomSampler: 随机采样器,它会随机从数据集中选择样本。可以设置随机数种子,以确保每次采样结果相同。 SequentialSampler: 顺序采样器,它会按照数据集中的顺序,依次选择样本。 SubsetRandomSampler: 子集随机采样器
640 0
|
网络虚拟化
在torch_geometric.datasets中使用Planetoid手动导入Core数据集及发生相关错误解决方案
在torch_geometric.datasets中使用Planetoid手动导入Core数据集及发生相关错误解决方案
776 0
在torch_geometric.datasets中使用Planetoid手动导入Core数据集及发生相关错误解决方案
cannot import name ‘DistanceMetric‘ from ‘sklearn.metrics‘
cannot import name ‘DistanceMetric‘ from ‘sklearn.metrics‘
650 0
cannot import name ‘DistanceMetric‘ from ‘sklearn.metrics‘
|
数据挖掘 索引
图数据集Zachary‘s karate club network详细介绍,包括其在NetworkX、PyG上的获取和应用方式
图数据集Zachary‘s karate club network详细介绍,包括其在NetworkX、PyG上的获取和应用方式
from sklearn.cross_validation import train_test_split发生报错
from sklearn.cross_validation import train_test_split发生报错
269 0
from sklearn.cross_validation import train_test_split发生报错