一篇文章让你明白python的装饰器

简介: 在看闭包问题之前先来看看关于python中作用域的问题 变量作用域 对于上述代码中出现错误,肯定没什么疑问了,毕竟b并没有定义和赋值,当我们把代码更改如下后: 再看一个例子:   首先这个错误已经非常明显:说在赋值之前引用了局部变量b 可能很多人觉得会打印10然后打印6,其实这里...

在看闭包问题之前先来看看关于python中作用域的问题

变量作用域

对于上述代码中出现错误,肯定没什么疑问了,毕竟b并没有定义和赋值,当我们把代码更改如下后:

再看一个例子:

 

首先这个错误已经非常明显:说在赋值之前引用了局部变量b

可能很多人觉得会打印10然后打印6,其实这里就是涉及到变量作用域的问题
当Python编译函数的的定义体的时候,它判断b是局部变量,毕竟在函数中有b = 9表示给b赋值了,所以python会从本地环境获取b,当我们调用方法执行的时候,定义体会获取并打印变量a的值,但是当尝试获取b的值的时候发现b没有绑定值,所以要想让上述代码运行还可以把b设置为全局变量,或者把b赋值放到调用之前

函数对象的作用域

python中一切皆对象,同其他对象一样,函数对象也有其使用的范围即函数对象的作用域。
在python中我们通过def定义函数,函数对象的作用域与def所在的层级相同,
通过下面代码进行理解:

def func1():
    def func2(x):
        return 2*x
    print(func2(5))

func1()
print(func2(5))

这个例子中我们在def func1函数内可以调用fun2,但是我们在外面是无法调用到func2的,所以结果为看到如下:

闭包

关于闭包主要有下面两种说法:

  • 闭包是符合一定条件的函数,定义为:闭包是在其词法上下文中引用了自由变量的函数
  • 闭包是由函数与其相关的引用环境组合而成的实体。定义为:在实现绑定时,需要创建一个能显示表示引用环境的东西,并将它与相关的子程序捆绑在一起,这样捆绑起来的整体称为闭包

个人觉得第二种说法更准确,闭包只是在形式上表现像函数,实际不是函数。
我们对函数的定义是:一些可执行的代码,这些代码在函数定义后就确定了,不会在执行时发生变化,所以一个函数只有一个实例。

闭包在运行的时候可以有多个实例,不同的引用环境和相同的环境组合可以产生不同的实例。

这里有一个词:引用环境,其实引用环境就是在执行运行的某个时间点,所有处于活跃状态的变量所组成的集合,这里的变量是指变量的名字和其所代表的对象之间的联系。

可以使用闭包语言的特点:

  • 函数可以作为另外一个函数的返回值或者参数,还可以作为一个变量的值。
  • 函数可以嵌套使用

而认为闭包是函数的有一句话是:
闭包是指延伸了作用域的函数,其中包含函数定义体中引用。但是不在定义体中定义的非全局变量。

上面这种说法个人觉得也是一种理解方式

相信看了这些概念也还是不好理解,还是通过下面例子更好理解:

先实现一种计算平均值的方法:

从结果我们可以看出这里保存了每次的历史值
换一种方法实现:

实现了第一种相同的效果,对这种方法分析:
通常我们会认为我们调用avg(10)的时候make_averager函数已经返回了,而它的本地作用域也一去不复返,但这里其实series是自由变量,是指未在本地作用域绑定的变量
我们可以通过print(dir(avg)),看到如下结果:

其实这里面保存着均布变量和自由变量的名称,我们可以通过下面方法查看:

eries的绑定在返回的avg函数的__closure__属性中这或许就是有的人会认为闭包一种函数。闭包会保留定义函数时存在的自由变量的绑定,这样调用函数时虽然定义作用域不能用了,但是仍能使用那些绑定

关于nonlocal

刚开始了解闭包之后,如果尝试使用这种编程方式容易出现以下错误使用例子:

def make_averager():
    count = 0
    total = 0

    def averager(new_value):
        count += 1
        total += new_value
        return total / count
    return averager

先来看一下错误提示:

这个例子中和我们上面使用的不同之处是:这里的count和total是数字,是不可变类型,而之前的例子中series是一个列表是可变类型
所以这里重新回到了最开始说的作用域问题了,当我们在averager中使用
count += 1的时候其实就是count = count + 1,这样就是在averager函数定义体中对count进行赋值,count就变成了局部变量。

问题小结:当时数字,字符串,元组等不可变类型时,只能读取不能更新,如果使用类似count += 1就会隐式的把count变成局部变量,所以开始例子中使用series,我们后面的操作是append并且列表还是可变对象

不过python3引入了一个新的关键词nonlocal,通过它把变量标记为自由变量,这样我们把上面这个错误的例子简单更改:

def make_averager():
    count = 0
    total = 0

    def averager(new_value):
        nonlocal count,total
        count += 1
        total += new_value
        return total / count
    return averager

到这里装饰器的前奏就说完了,下面就是装饰器,我个人觉得装饰器只是闭包的一种应用,闭包在很多情况下都是一种非常好的变成技巧

装饰器

关于装饰器本来是想重新整理一下,看了自己之前整理的博客,已经挺详细的,就把连接直接放这里了
http://www.pythonsite.com/?p=113

所有的努力都值得期许,每一份梦想都应该灌溉!
目录
相关文章
|
2月前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。
|
2月前
|
测试技术 数据安全/隐私保护 开发者
探索Python中的装饰器:从基础到高级应用
装饰器在Python中是一个强大且令人兴奋的功能,它允许开发者在不修改原有函数代码的前提下增加额外的功能。本文将通过具体代码示例,带领读者从装饰器的基础概念入手,逐步深入到高级用法,如带参数的装饰器和装饰器嵌套等。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。
|
30天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
103 61
Python装饰器实战:打造高效性能计时工具
|
30天前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
90 59
|
2月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
48 5
|
2月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
50 7
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
2月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
73 6
|
2月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
2月前
|
测试技术 开发者 Python
深入理解Python装饰器:从基础到高级应用
本文旨在为读者提供一个全面的Python装饰器指南,从其基本概念讲起,逐步深入探讨其高级应用。我们将通过实例解析装饰器的工作原理,并展示如何利用它们来增强函数功能、控制程序流程以及实现代码的模块化。无论你是Python初学者还是经验丰富的开发者,本文都将为你提供宝贵的见解和实用的技巧,帮助你更好地掌握这一强大的语言特性。
70 4

热门文章

最新文章