【原创】Twemperf 中对 BSD queue.h 的兼容实现

本文涉及的产品
云数据库 Redis 版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生内存数据库 Tair,内存型 2GB
简介:

      研究 twemperf 源码过程中,发现其中包含了针对 BSD queue.h 文件的兼容实现。并且还额外增加了    SLIST 和    STAILQ   两种结构的实现和相应操作。

     下面给出的是 twemperf 中 mcp_queue.h 的源码。 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
  *  twemperf - a tool for measuring memcached server performance.
  *  Copyright (C) 2011 Twitter, Inc.
  *
  *  This program is free software: you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *  the Free Software Foundation, either version 3 of the License, or
  *  (at your option) any later version.
  *
  *  This program is distributed in the hope that it will be useful,
  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  *  GNU General Public License for more details.
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  */
 
 
/*-
  * Copyright (c) 1991, 1993
  *    The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *    @(#)queue.h    8.5 (Berkeley) 8/20/94
  * $FreeBSD: src/sys/sys/queue.h,v 1.73 2010/02/20 01:05:30 emaste Exp $
  */
 
 
#ifndef _MCP_QUEUE_H_
#define _MCP_QUEUE_H_
 
 
#include <mcp_log.h>
 
 
#define __offsetof(type, field) ((size_t)(&((type *)NULL)->field))
 
 
/*
  * This file defines five types of data structures: singly-linked lists,
  * singly-linked tail queues, lists, tail queues, and circular queues.
  * 该文件定义 5 中类型的数据结构:
  *
  * A singly-linked list is headed by a single forward pointer. The elements
  * are singly linked for minimum space and pointer manipulation overhead at
  * the expense of O(n) removal for arbitrary elements. New elements can be
  * added to the list after an existing element or at the head of the list.
  * Elements being removed from the head of the list should use the explicit
  * macro for this purpose for optimum efficiency. A singly-linked list may
  * only be traversed in the forward direction.  Singly-linked lists are ideal
  * for applications with large datasets and few or no removals or for
  * implementing a LIFO queue.
  * singly-linked list 通过单个正向指针进行访问。元素构成单链表,移除元素的时间复
  * 杂度为 O(n) 。新元素可被添加到指定元素的后面或者 list 的头部。仅支持正向遍历。 
  * 适用范围:少量或者没有移除操作的大数据集应用程序;LIFO queue 。
  *
  * A singly-linked tail queue is headed by a pair of pointers, one to the
  * head of the list and the other to the tail of the list. The elements are
  * singly linked for minimum space and pointer manipulation overhead at the
  * expense of O(n) removal for arbitrary elements. New elements can be added
  * to the list after an existing element, at the head of the list, or at the
  * end of the list. Elements being removed from the head of the tail queue
  * should use the explicit macro for this purpose for optimum efficiency.
  * A singly-linked tail queue may only be traversed in the forward direction.
  * Singly-linked tail queues are ideal for applications with large datasets
  * and few or no removals or for implementing a FIFO queue.
  * singly-linked tail queue 可通过一对指针进行访问,分别指向头部和尾部。元素构成
  * 单链表,移除元素的时间复杂度为 O(n) 。新元素可被添加到指定元素的后面、list 的头部或尾部。
  * 仅支持正向遍历。适用范围:少量或者没有移除操作的大数据集应用程序;FIFO queue 。
 
  * A list is headed by a single forward pointer (or an array of forward
  * pointers for a hash table header). The elements are doubly linked
  * so that an arbitrary element can be removed without a need to
  * traverse the list. New elements can be added to the list before
  * or after an existing element or at the head of the list. A list
  * may only be traversed in the forward direction.
  * list 通过单个正向指针进行访问(或者用于哈希表头的一组正向指针)。元素构成双链表,故
  * 无需遍历就可以删除任意元素。新元素可被添加到指定元素的前面或后面,以及 list 的头部。
  * 仅支持正向遍历。
  *
  * A tail queue is headed by a pair of pointers, one to the head of the
  * list and the other to the tail of the list. The elements are doubly
  * linked so that an arbitrary element can be removed without a need to
  * traverse the list. New elements can be added to the list before or
  * after an existing element, at the head of the list, or at the end of
  * the list. A tail queue may be traversed in either direction.
  * tail queue 可通过一对指针进行访问,分别指向头部和尾部。元素构成双链表,故
  * 无需遍历就可以删除任意元素。新元素可被添加到指定元素的前面或后面,以及 tail queue
  * 的头部或尾部。<span></span>支持正向和反向遍历。
 
  * A circle queue is headed by a pair of pointers, one to the head of the
  * list and the other to the tail of the list. The elements are doubly
  * linked so that an arbitrary element can be removed without a need to
  * traverse the list. New elements can be added to the list before or after
  * an existing element, at the head of the list, or at the end of the list.
  * A circle queue may be traversed in either direction, but has a more
  * complex end of list detection.
  * circle queue 可通过一对指针进行访问,分别指向头部和尾部。元素构成双链表,故
  * 无需遍历就可以删除任意元素。新元素可被添加到指定元素的前面或后面,以及 circle queue
  * 的头部或尾部。支持正向和反向遍历,但需要更加复杂的 list 末端检测。
  *
  * For details on the use of these macros, see the queue(3) manual page.
  *
  *
  *                      SLIST   LIST    STAILQ  TAILQ   CIRCLEQ
  * _HEAD                +       +       +       +       +
  * _HEAD_INITIALIZER    +       +       +       +       +
  * _ENTRY               +       +       +       +       +
  * _INIT                +       +       +       +       +
  * _EMPTY               +       +       +       +       +
  * _FIRST               +       +       +       +       +
  * _NEXT                +       +       +       +       +
  * _PREV                -       -       -       +       +
  * _LAST                -       -       +       +       +
  * _FOREACH             +       +       +       +       +
  * _FOREACH_REVERSE     -       -       -       +       +
  * _INSERT_HEAD         +       +       +       +       +
  * _INSERT_BEFORE       -       +       -       +       +
  * _INSERT_AFTER        +       +       +       +       +
  * _INSERT_TAIL         -       -       +       +       +
  * _REMOVE_HEAD         +       -       +       -       -
  * _REMOVE              +       +       +       +       +
  *
  */
 
 
#define QUEUE_MACRO_SCRUB 1
 
 
#ifdef MCP_ASSERT_PANIC
# define QUEUE_MACRO_TRACE  1
# define QUEUE_MACRO_ASSERT 1
#endif
 
 
#ifdef QUEUE_MACRO_SCRUB
 
 
#define QMD_SAVELINK(name, link)    void **name = (void *)&(link)
 
 
// 即"trash it" ,将 x 的值设置为NULL
#define TRASHIT(x) do {                                                 \
    (x) = ( void *) NULL;                                                \
} while (0)
 
 
#else
 
 
#define QMD_SAVELINK(name, link)
#define TRASHIT(x)
 
 
#endif /* QUEUE_MACRO_SCRUB */
 
 
#ifdef QUEUE_MACRO_TRACE
 
 
/* Store the last 2 places the queue element or head was altered */
struct qm_trace {
    char *lastfile;
    int   lastline;
    char *prevfile;
    int   prevline;
};
 
 
#define TRACEBUF    struct qm_trace trace;
 
 
#define QMD_TRACE_HEAD(head) do {                                       \
    (head)->trace.prevline = (head)->trace.lastline;                    \
    (head)->trace.prevfile = (head)->trace.lastfile;                    \
    (head)->trace.lastline = __LINE__;                                  \
    (head)->trace.lastfile = __FILE__;                                  \
} while (0)
 
 
#define QMD_TRACE_ELEM(elem) do {                                       \
    (elem)->trace.prevline = (elem)->trace.lastline;                    \
    (elem)->trace.prevfile = (elem)->trace.lastfile;                    \
    (elem)->trace.lastline = __LINE__;                                  \
    (elem)->trace.lastfile = __FILE__;                                  \
} while (0)
 
 
#else
 
 
#define QMD_TRACE_ELEM(elem)
#define QMD_TRACE_HEAD(head)
#define TRACEBUF
 
 
#endif /* QUEUE_MACRO_TRACE */
 
 
/*
  * Singly-linked List declarations.
  */
#define SLIST_HEAD(name, type)                                          \
struct name {                                                           \
    struct type *slh_first; /* first element */                         \
}
 
 
#define SLIST_HEAD_INITIALIZER(head)                                    \
    { NULL }
 
 
#define SLIST_ENTRY(type)                                               \
struct {                                                                \
    struct type *sle_next;   /* next element */                           \
}
 
 
/*
  * Singly-linked List functions.
  */
#define SLIST_EMPTY(head)    ((head)->slh_first == NULL)
 
 
#define SLIST_FIRST(head)    ((head)->slh_first)
 
 
#define SLIST_FOREACH(var, head, field)                                 \
    for ((var) = SLIST_FIRST((head));                                   \
        (var);                                                          \
        (var) = SLIST_NEXT((var), field))
 
 
#define SLIST_FOREACH_SAFE(var, head, field, tvar)                      \
    for ((var) = SLIST_FIRST((head));                                   \
        (var) && ((tvar) = SLIST_NEXT((var), field), 1);                \
        (var) = (tvar))
 
 
#define SLIST_FOREACH_PREVPTR(var, varp, head, field)                   \
    for ((varp) = &SLIST_FIRST((head));                                 \
        ((var) = *(varp)) != NULL;                                      \
        (varp) = &SLIST_NEXT((var), field))
 
 
#define SLIST_INIT(head) do {                                           \
    SLIST_FIRST((head)) = NULL;                                         \
} while (0)
 
 
#define SLIST_INSERT_AFTER(slistelm, elm, field) do {                   \
    SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field);           \
    SLIST_NEXT((slistelm), field) = (elm);                              \
} while (0)
 
 
#define SLIST_INSERT_HEAD(head, elm, field) do {                        \
    SLIST_NEXT((elm), field) = SLIST_FIRST((head));                     \
    SLIST_FIRST((head)) = (elm);                                        \
} while (0)
 
 
#define SLIST_NEXT(elm, field)    ((elm)->field.sle_next)
 
 
#define SLIST_REMOVE(head, elm, type, field) do {                       \
    if (SLIST_FIRST((head)) == (elm)) {                                 \
        SLIST_REMOVE_HEAD((head), field);                               \
    } else {                                                            \
        struct type *curelm = SLIST_FIRST((head));                      \
        while (SLIST_NEXT(curelm, field) != (elm)) {                    \
            curelm = SLIST_NEXT(curelm, field);                         \
        }                                                               \
        SLIST_REMOVE_AFTER(curelm, field);                              \
    }                                                                   \
} while (0)
 
 
#define SLIST_REMOVE_AFTER(elm, field) do {                             \
    QMD_SAVELINK(oldnext, SLIST_NEXT(SLIST_NEXT(elm, field), field));   \
    SLIST_NEXT(elm, field) = SLIST_NEXT(SLIST_NEXT(elm, field), field); \
    TRASHIT(*oldnext);                                                  \
} while (0)
 
 
#define SLIST_REMOVE_HEAD(head, field) do {                             \
    QMD_SAVELINK(oldnext, SLIST_NEXT(SLIST_FIRST((head)), field));      \
    SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field);       \
    TRASHIT(*oldnext);                                                  \
} while (0)
 
 
/*
  * Singly-linked Tail queue declarations.
  */
#define STAILQ_HEAD(name, type)                                         \
struct name {                                                           \
    struct type *stqh_first; /* first element */                         \
    struct type **stqh_last; /* addr of last next element */             \
}
 
 
#define STAILQ_HEAD_INITIALIZER(head)                                   \
    { NULL, &(head).stqh_first }
 
 
#define STAILQ_ENTRY(type)                                              \
struct {                                                                \
    struct type *stqe_next;     /* next element */                       \
}
 
 
/*
  * Singly-linked Tail queue functions.
  */
#define STAILQ_CONCAT(head1, head2) do {                                \
    if (!STAILQ_EMPTY((head2))) {                                       \
        *(head1)->stqh_last = (head2)->stqh_first;                      \
        (head1)->stqh_last = (head2)->stqh_last;                        \
        STAILQ_INIT((head2));                                           \
    }                                                                   \
} while (0)
 
 
#define STAILQ_EMPTY(head)    ((head)->stqh_first == NULL)
 
 
#define STAILQ_FIRST(head)    ((head)->stqh_first)
 
 
#define STAILQ_FOREACH(var, head, field)                                \
    for ((var) = STAILQ_FIRST((head));                                   \
        (var);                                                           \
        (var) = STAILQ_NEXT((var), field))
 
 
 
 
#define STAILQ_FOREACH_SAFE(var, head, field, tvar)                     \
    for ((var) = STAILQ_FIRST((head));                                  \
        (var) && ((tvar) = STAILQ_NEXT((var), field), 1);               \
        (var) = (tvar))
 
 
#define STAILQ_INIT(head) do {                                          \
    STAILQ_FIRST((head)) = NULL;                                        \
    (head)->stqh_last = &STAILQ_FIRST((head));                          \
} while (0)
 
 
#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do {               \
    if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
        (head)->stqh_last = &STAILQ_NEXT((elm), field);                 \
    STAILQ_NEXT((tqelm), field) = (elm);                                \
} while (0)
 
 
#define STAILQ_INSERT_HEAD(head, elm, field) do {                       \
    if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL)     \
        (head)->stqh_last = &STAILQ_NEXT((elm), field);                 \
    STAILQ_FIRST((head)) = (elm);                                       \
} while (0)
 
 
#define STAILQ_INSERT_TAIL(head, elm, field) do {                       \
    STAILQ_NEXT((elm), field) = NULL;                                   \
    *(head)->stqh_last = (elm);                                         \
    (head)->stqh_last = &STAILQ_NEXT((elm), field);                     \
} while (0)
 
 
#define STAILQ_LAST(head, type, field)                                  \
    (STAILQ_EMPTY((head)) ?                                             \
        NULL :                                                          \
            (( struct type *)( void *)                                    \
        (( char *)((head)->stqh_last) - __offsetof( struct type, field))))
 
 
#define STAILQ_NEXT(elm, field)    ((elm)->field.stqe_next)
 
 
#define STAILQ_REMOVE(head, elm, type, field) do {                      \
    if (STAILQ_FIRST((head)) == (elm)) {                                \
        STAILQ_REMOVE_HEAD((head), field);                              \
    }                                                                   \
    else {                                                              \
        struct type *curelm = STAILQ_FIRST((head));                     \
        while (STAILQ_NEXT(curelm, field) != (elm))                     \
            curelm = STAILQ_NEXT(curelm, field);                        \
        STAILQ_REMOVE_AFTER(head, curelm, field);                       \
    }                                                                   \
} while (0)
 
 
#define STAILQ_REMOVE_HEAD(head, field) do {                            \
    QMD_SAVELINK(oldnext, STAILQ_NEXT(STAILQ_FIRST((head)), field));    \
    if ((STAILQ_FIRST((head)) =                                         \
          STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) {           \
        (head)->stqh_last = &STAILQ_FIRST((head));                      \
    }                                                                   \
    TRASHIT(*oldnext);                                                  \
} while (0)
 
 
#define STAILQ_REMOVE_AFTER(head, elm, field) do {                      \
    QMD_SAVELINK(oldnext, STAILQ_NEXT(STAILQ_NEXT(elm, field), field)); \
    if ((STAILQ_NEXT(elm, field) =                                      \
          STAILQ_NEXT(STAILQ_NEXT(elm, field), field)) == NULL) {        \
        (head)->stqh_last = &STAILQ_NEXT((elm), field);                 \
    }                                                                   \
    TRASHIT(*oldnext);                                                  \
} while (0)
 
 
#define STAILQ_SWAP(head1, head2, type) do {                            \
    struct type *swap_first = STAILQ_FIRST(head1);                      \
    struct type **swap_last = (head1)->stqh_last;                       \
    STAILQ_FIRST(head1) = STAILQ_FIRST(head2);                          \
    (head1)->stqh_last = (head2)->stqh_last;                            \
    STAILQ_FIRST(head2) = swap_first;                                   \
    (head2)->stqh_last = swap_last;                                     \
    if (STAILQ_EMPTY(head1))                                            \
        (head1)->stqh_last = &STAILQ_FIRST(head1);                      \
    if (STAILQ_EMPTY(head2))                                            \
        (head2)->stqh_last = &STAILQ_FIRST(head2);                      \
} while (0)
 
 
 
 
/*
  * List declarations.
  */
#define LIST_HEAD(name, type)                                           \
struct name {                                                           \
    struct type *lh_first; /* first element */                           \
}
 
 
#define LIST_HEAD_INITIALIZER(head)                                     \
    { NULL }
 
 
// 声明一个双链表结构
#define LIST_ENTRY(type)                                                \
struct {                                                                \
    struct type *le_next;   /* next element */   // 指向下一链表元素的指针   \
    struct type **le_prev; /* address of previous next element */ // 指向上一链表元素的le_next 指针的地址\
}
 
 
/*
  * List functions.
  */
 
 
#ifdef QUEUE_MACRO_ASSERT
 
 
// 校验由 head 指定的链表的头元素是否合法
#define QMD_LIST_CHECK_HEAD(head, field) do {                               \
    if (LIST_FIRST((head)) != NULL &&                                       \
        LIST_FIRST((head))->field.le_prev != &LIST_FIRST((head))) {         \
        log_panic( "Bad list head %p first->prev != head" , ( void *)(head));  \
    }                                                                       \
} while (0)
 
 
// 校验元素 elm 的 le_next 指针所指对象是否合法
#define QMD_LIST_CHECK_NEXT(elm, field) do {                                \
    if (LIST_NEXT((elm), field) != NULL &&                                  \
        LIST_NEXT((elm), field)->field.le_prev != &((elm)->field.le_next)) {\
        log_panic( "Bad link elm %p next->prev != elm" ,( void *)(elm));       \
    }                                                                       \
} while (0)
 
 
// 校验元素 elm 的 le_prev 指针所指对象是否合法
#define QMD_LIST_CHECK_PREV(elm, field) do {                            \
    if (*(elm)->field.le_prev != (elm)) {                               \
        log_panic( "Bad link elm %p prev->next != elm" ,( void *)(elm));   \
    }                                                                   \
} while (0)
 
 
#else
 
 
#define QMD_LIST_CHECK_HEAD(head, field)
#define QMD_LIST_CHECK_NEXT(elm, field)
#define QMD_LIST_CHECK_PREV(elm, field)
 
 
#endif /* QUEUE_MACRO_ASSERT */
 
 
#define LIST_EMPTY(head)    ((head)->lh_first == NULL)
 
 
#define LIST_FIRST(head)    ((head)->lh_first)
 
 
#define LIST_FOREACH(var, head, field)                                  \
    for ((var) = LIST_FIRST((head));                                    \
        (var);                                                          \
        (var) = LIST_NEXT((var), field))
 
 
#define LIST_FOREACH_SAFE(var, head, field, tvar)                       \
    for ((var) = LIST_FIRST((head));                                    \
        (var) && ((tvar) = LIST_NEXT((var), field), 1);                 \
        (var) = (tvar))
 
 
#define LIST_INIT(head) do {                                            \
    LIST_FIRST((head)) = NULL;                                          \
} while (0)
 
 
#define LIST_INSERT_AFTER(listelm, elm, field) do {                     \
    QMD_LIST_CHECK_NEXT(listelm, field);                                \
    if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
        LIST_NEXT((listelm), field)->field.le_prev =                    \
            &LIST_NEXT((elm), field);                                   \
    LIST_NEXT((listelm), field) = (elm);                                \
    (elm)->field.le_prev = &LIST_NEXT((listelm), field);                \
} while (0)
 
 
#define LIST_INSERT_BEFORE(listelm, elm, field) do {                    \
    QMD_LIST_CHECK_PREV(listelm, field);                                \
    (elm)->field.le_prev = (listelm)->field.le_prev;                    \
    LIST_NEXT((elm), field) = (listelm);                                \
    *(listelm)->field.le_prev = (elm);                                  \
    (listelm)->field.le_prev = &LIST_NEXT((elm), field);                \
} while (0)
 
 
#define LIST_INSERT_HEAD(head, elm, field) do {                         \
    QMD_LIST_CHECK_HEAD((head), field);                                 \
    if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL)         \
        LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);   \
    LIST_FIRST((head)) = (elm);                                         \
    (elm)->field.le_prev = &LIST_FIRST((head));                         \
} while (0)
 
 
// 获取元素 elm 中 le_next 指向的下一个 elm 元素
#define LIST_NEXT(elm, field)    ((elm)->field.le_next)
 
 
// 将元素 elm 从链表中移除
#define LIST_REMOVE(elm, field) do {                                    \
    QMD_SAVELINK(oldnext, (elm)->field.le_next);                        \
    QMD_SAVELINK(oldprev, (elm)->field.le_prev);                        \
    QMD_LIST_CHECK_NEXT(elm, field);                                    \
    QMD_LIST_CHECK_PREV(elm, field);                                    \
    if (LIST_NEXT((elm), field) != NULL)                                \
        LIST_NEXT((elm), field)->field.le_prev = (elm)->field.le_prev;  \
    *(elm)->field.le_prev = LIST_NEXT((elm), field);                    \
    TRASHIT(*oldnext);                                                  \
    TRASHIT(*oldprev);                                                  \
} while (0)
 
 
#define LIST_SWAP(head1, head2, type, field) do {                       \
    struct type *swap_tmp = LIST_FIRST((head1));                        \
    LIST_FIRST((head1)) = LIST_FIRST((head2));                          \
    LIST_FIRST((head2)) = swap_tmp;                                     \
    if ((swap_tmp = LIST_FIRST((head1))) != NULL)                       \
        swap_tmp->field.le_prev = &LIST_FIRST((head1));                 \
    if ((swap_tmp = LIST_FIRST((head2))) != NULL)                       \
        swap_tmp->field.le_prev = &LIST_FIRST((head2));                 \
} while (0)
 
 
/*
  * Tail queue declarations.
  */
#define TAILQ_HEAD(name, type)                                          \
struct name {                                                           \
    struct type *tqh_first; /* first element */                         \
    struct type **tqh_last; /* addr of last next element */             \
    TRACEBUF                                                            \
}
 
 
#define TAILQ_HEAD_INITIALIZER(head)                                    \
    { NULL, &(head).tqh_first }
 
 
#define TAILQ_ENTRY(type)                                               \
struct {                                                                \
    struct type *tqe_next;   /* next element */                           \
    struct type **tqe_prev; /* address of previous next element */       \
    TRACEBUF                                                            \
}
 
 
/*
  * Tail queue functions.
  */
#ifdef QUEUE_MACRO_ASSERT
 
 
#define QMD_TAILQ_CHECK_HEAD(head, field) do {                              \
    if (!TAILQ_EMPTY(head) &&                                               \
        TAILQ_FIRST((head))->field.tqe_prev != &TAILQ_FIRST((head))) {      \
        log_panic( "Bad tailq head %p first->prev != head" , ( void *)(head)); \
    }                                                                       \
} while (0)
 
 
#define QMD_TAILQ_CHECK_TAIL(head, field) do {                              \
    if (*(head)->tqh_last != NULL) {                                        \
        log_panic( "Bad tailq NEXT(%p->tqh_last) != NULL" ,( void *)(head));   \
    }                                                                       \
} while (0)
 
 
#define QMD_TAILQ_CHECK_NEXT(elm, field) do {                               \
    if (TAILQ_NEXT((elm), field) != NULL &&                                 \
        TAILQ_NEXT((elm), field)->field.tqe_prev != &((elm)->field.tqe_next)) {\
        log_panic( "Bad link elm %p next->prev != elm" ,( void *)(elm));       \
    }                                                                       \
} while (0)
 
 
#define QMD_TAILQ_CHECK_PREV(elm, field) do {                           \
    if (*(elm)->field.tqe_prev != (elm)) {                              \
        log_panic( "Bad link elm %p prev->next != elm" ,( void *)(elm));   \
    }                                                                   \
} while (0)
 
 
#else
 
 
#define QMD_TAILQ_CHECK_HEAD(head, field)
#define QMD_TAILQ_CHECK_TAIL(head, headname)
#define QMD_TAILQ_CHECK_NEXT(elm, field)
#define QMD_TAILQ_CHECK_PREV(elm, field)
 
 
#endif /* QUEUE_MACRO_ASSERT */
 
 
#define TAILQ_CONCAT(head1, head2, field) do {                          \
    if (!TAILQ_EMPTY(head2)) {                                          \
        *(head1)->tqh_last = (head2)->tqh_first;                        \
        (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;         \
        (head1)->tqh_last = (head2)->tqh_last;                          \
        TAILQ_INIT((head2));                                            \
        QMD_TRACE_HEAD(head1);                                          \
        QMD_TRACE_HEAD(head2);                                          \
    }                                                                   \
} while (0)
 
 
#define TAILQ_EMPTY(head)    ((head)->tqh_first == NULL)
 
 
#define TAILQ_FIRST(head)    ((head)->tqh_first)
 
 
#define TAILQ_FOREACH(var, head, field)                                 \
    for ((var) = TAILQ_FIRST((head));                                   \
        (var);                                                          \
        (var) = TAILQ_NEXT((var), field))
 
 
#define TAILQ_FOREACH_SAFE(var, head, field, tvar)                      \
    for ((var) = TAILQ_FIRST((head));                                   \
        (var) && ((tvar) = TAILQ_NEXT((var), field), 1);                \
        (var) = (tvar))
 
 
#define TAILQ_FOREACH_REVERSE(var, head, headname, field)               \
    for ((var) = TAILQ_LAST((head), headname);                          \
        (var);                                                          \
        (var) = TAILQ_PREV((var), headname, field))
 
 
#define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)    \
    for ((var) = TAILQ_LAST((head), headname);                          \
        (var) && ((tvar) = TAILQ_PREV((var), headname, field), 1);      \
        (var) = (tvar))
 
 
#define TAILQ_INIT(head) do {                                           \
    TAILQ_FIRST((head)) = NULL;                                         \
    (head)->tqh_last = &TAILQ_FIRST((head));                            \
    QMD_TRACE_HEAD(head);                                               \
} while (0)
 
 
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {              \
    QMD_TAILQ_CHECK_NEXT(listelm, field);                               \
    if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL) {  \
        TAILQ_NEXT((elm), field)->field.tqe_prev =  &TAILQ_NEXT((elm), field);\
    } else {                                                            \
        (head)->tqh_last = &TAILQ_NEXT((elm), field);                   \
        QMD_TRACE_HEAD(head);                                           \
    }                                                                   \
    TAILQ_NEXT((listelm), field) = (elm);                               \
    (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field);              \
    QMD_TRACE_ELEM(&(elm)->field);                                      \
    QMD_TRACE_ELEM(&listelm->field);                                    \
} while (0)
 
 
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                   \
    QMD_TAILQ_CHECK_PREV(listelm, field);                               \
    (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                  \
    TAILQ_NEXT((elm), field) = (listelm);                               \
    *(listelm)->field.tqe_prev = (elm);                                 \
    (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field);              \
    QMD_TRACE_ELEM(&(elm)->field);                                      \
    QMD_TRACE_ELEM(&listelm->field);                                    \
} while (0)
 
 
#define TAILQ_INSERT_HEAD(head, elm, field) do {                        \
    QMD_TAILQ_CHECK_HEAD(head, field);                                  \
    if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL)       \
        TAILQ_FIRST((head))->field.tqe_prev =                           \
            &TAILQ_NEXT((elm), field);                                  \
    else                                                                 \
        (head)->tqh_last = &TAILQ_NEXT((elm), field);                   \
    TAILQ_FIRST((head)) = (elm);                                        \
    (elm)->field.tqe_prev = &TAILQ_FIRST((head));                       \
    QMD_TRACE_HEAD(head);                                               \
    QMD_TRACE_ELEM(&(elm)->field);                                      \
} while (0)
 
 
#define TAILQ_INSERT_TAIL(head, elm, field) do {                        \
    QMD_TAILQ_CHECK_TAIL(head, field);                                  \
    TAILQ_NEXT((elm), field) = NULL;                                    \
    (elm)->field.tqe_prev = (head)->tqh_last;                           \
    *(head)->tqh_last = (elm);                                          \
    (head)->tqh_last = &TAILQ_NEXT((elm), field);                       \
    QMD_TRACE_HEAD(head);                                               \
    QMD_TRACE_ELEM(&(elm)->field);                                      \
} while (0)
 
 
#define TAILQ_LAST(head, headname)                                      \
    (*((( struct headname *)((head)->tqh_last))->tqh_last))
 
 
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
 
 
#define TAILQ_PREV(elm, headname, field)                                \
    (*((( struct headname *)((elm)->field.tqe_prev))->tqh_last))
 
 
#define TAILQ_REMOVE(head, elm, field) do {                             \
    QMD_SAVELINK(oldnext, (elm)->field.tqe_next);                       \
    QMD_SAVELINK(oldprev, (elm)->field.tqe_prev);                       \
    QMD_TAILQ_CHECK_NEXT(elm, field);                                   \
    QMD_TAILQ_CHECK_PREV(elm, field);                                   \
    if ((TAILQ_NEXT((elm), field)) != NULL) {                           \
        TAILQ_NEXT((elm), field)->field.tqe_prev =                      \
            (elm)->field.tqe_prev;                                      \
    } else {                                                            \
        (head)->tqh_last = (elm)->field.tqe_prev;                       \
        QMD_TRACE_HEAD(head);                                           \
    }                                                                   \
    *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field);                  \
    TRASHIT(*oldnext);                                                  \
    TRASHIT(*oldprev);                                                  \
    QMD_TRACE_ELEM(&(elm)->field);                                      \
} while (0)
 
 
#define TAILQ_SWAP(head1, head2, type, field) do {                      \
    struct type *swap_first = (head1)->tqh_first;                       \
    struct type **swap_last = (head1)->tqh_last;                        \
    (head1)->tqh_first = (head2)->tqh_first;                            \
    (head1)->tqh_last = (head2)->tqh_last;                              \
    (head2)->tqh_first = swap_first;                                    \
    (head2)->tqh_last = swap_last;                                      \
    if ((swap_first = (head1)->tqh_first) != NULL)                      \
        swap_first->field.tqe_prev = &(head1)->tqh_first;               \
    else                                                                 \
        (head1)->tqh_last = &(head1)->tqh_first;                        \
    if ((swap_first = (head2)->tqh_first) != NULL)                      \
        swap_first->field.tqe_prev = &(head2)->tqh_first;               \
    else                                                                 \
        (head2)->tqh_last = &(head2)->tqh_first;                        \
} while (0)
 
 
/*
  * Circular queue declarations.
  */
#define CIRCLEQ_HEAD(name, type)                                        \
struct name {                                                           \
    struct type *cqh_first; /* first element */                         \
    struct type *cqh_last;   /* last element */                           \
}
 
 
#define CIRCLEQ_HEAD_INITIALIZER(head)                                  \
    { ( void *)&(head), ( void *)&(head) }
 
 
#define CIRCLEQ_ENTRY(type)                                             \
struct {                                                                \
    struct type *cqe_next; /* next element */                           \
    struct type *cqe_prev; /* previous element */                       \
}
 
 
/*
  * Circular queue functions.
  */
#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
 
 
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
 
 
#define CIRCLEQ_FOREACH(var, head, field)                               \
    for ((var) = CIRCLEQ_FIRST((head));                                 \
        (var) != ( void *)(head) || ((var) = NULL);                      \
        (var) = CIRCLEQ_NEXT((var), field))
 
 
#define CIRCLEQ_FOREACH_REVERSE(var, head, field)                       \
    for ((var) = CIRCLEQ_LAST((head));                                  \
        (var) != ( void *)(head) || ((var) = NULL);                      \
        (var) = CIRCLEQ_PREV((var), field))
 
 
#define CIRCLEQ_INIT(head) do {                                         \
    CIRCLEQ_FIRST((head)) = ( void *)(head);                             \
    CIRCLEQ_LAST((head)) = ( void *)(head);                              \
} while (0)
 
 
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {            \
    CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field);        \
    CIRCLEQ_PREV((elm), field) = (listelm);                             \
    if (CIRCLEQ_NEXT((listelm), field) == ( void *)(head))               \
        CIRCLEQ_LAST((head)) = (elm);                                   \
    else                                                                 \
        CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);    \
    CIRCLEQ_NEXT((listelm), field) = (elm);                             \
} while (0)
 
 
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {           \
    CIRCLEQ_NEXT((elm), field) = (listelm);                             \
    CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field);        \
    if (CIRCLEQ_PREV((listelm), field) == ( void *)(head))               \
        CIRCLEQ_FIRST((head)) = (elm);                                  \
    else                                                                 \
        CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);    \
    CIRCLEQ_PREV((listelm), field) = (elm);                             \
} while (0)
 
 
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                      \
    CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head));                 \
    CIRCLEQ_PREV((elm), field) = ( void *)(head);                        \
    if (CIRCLEQ_LAST((head)) == ( void *)(head))                         \
        CIRCLEQ_LAST((head)) = (elm);                                   \
    else                                                                 \
        CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm);             \
    CIRCLEQ_FIRST((head)) = (elm);                                      \
} while (0)
 
 
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                      \
    CIRCLEQ_NEXT((elm), field) = ( void *)(head);                        \
    CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head));                  \
    if (CIRCLEQ_FIRST((head)) == ( void *)(head))                        \
        CIRCLEQ_FIRST((head)) = (elm);                                  \
    else                                                                 \
        CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm);              \
    CIRCLEQ_LAST((head)) = (elm);                                       \
} while (0)
 
 
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
 
 
#define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
 
 
#define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
 
 
#define CIRCLEQ_REMOVE(head, elm, field) do {                           \
    if (CIRCLEQ_NEXT((elm), field) == ( void *)(head))                   \
        CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field);              \
    else                                                                 \
        CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) =               \
            CIRCLEQ_PREV((elm), field);                                 \
    if (CIRCLEQ_PREV((elm), field) == ( void *)(head))                   \
        CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field);             \
    else                                                                 \
        CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) =               \
            CIRCLEQ_NEXT((elm), field);                                 \
} while (0)
 
#endif
      代码中主要实现了五种类型数据结构和其相应的操作。通过 linux 下的 man 命令,可以查看 BSD 库中的定义说明。  
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# man 3 queue
 
QUEUE(3)                 BSD Library Functions Manual                 QUEUE(3)
 
NAME
      LIST_ENTRY, LIST_HEAD, LIST_INIT, LIST_INSERT_AFTER, LIST_INSERT_HEAD, LIST_REMOVE, TAILQ_ENTRY, TAILQ_HEAD, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_REMOVE, CIRCLEQ_ENTRY, CIRCLEQ_HEAD, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE, CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_REMOVE - implementations of lists, tail queues, and circular queues
      实现 list 、 tail queue 和 circular queue 的功能。
      
SYNOPSIS
      #include <sys/queue.h>
 
      LIST_ENTRY(TYPE);
 
      LIST_HEAD(HEADNAME, TYPE);
 
      LIST_INIT(LIST_HEAD * head );
 
      LIST_INSERT_AFTER(LIST_ENTRY *listelm, TYPE *elm, LIST_ENTRY NAME);
 
      LIST_INSERT_HEAD(LIST_HEAD * head , TYPE *elm, LIST_ENTRY NAME);
 
      LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);
 
      TAILQ_ENTRY(TYPE);
 
      TAILQ_HEAD(HEADNAME, TYPE);
 
      TAILQ_INIT(TAILQ_HEAD * head );
 
      TAILQ_INSERT_AFTER(TAILQ_HEAD * head , TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME);
 
      TAILQ_INSERT_HEAD(TAILQ_HEAD * head , TYPE *elm, TAILQ_ENTRY NAME);
 
      TAILQ_INSERT_TAIL(TAILQ_HEAD * head , TYPE *elm, TAILQ_ENTRY NAME);
 
      TAILQ_REMOVE(TAILQ_HEAD * head , TYPE *elm, TAILQ_ENTRY NAME);
 
      CIRCLEQ_ENTRY(TYPE);
 
      CIRCLEQ_HEAD(HEADNAME, TYPE);
 
      CIRCLEQ_INIT(CIRCLEQ_HEAD * head );
 
      CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD * head , TYPE *listelm, TYPE *elm, CIRCLEQ_ENTRY NAME);
 
      CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD * head , TYPE *listelm, TYPE *elm, CIRCLEQ_ENTRY NAME);
 
      CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD * head , TYPE *elm, CIRCLEQ_ENTRY NAME);
 
      CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD * head , TYPE *elm, CIRCLEQ_ENTRY NAME);
 
      CIRCLEQ_REMOVE(CIRCLEQ_HEAD * head , TYPE *elm, CIRCLEQ_ENTRY NAME);
 
DESCRIPTION
      These macros define and operate on three types of data structures: lists, tail queues, and circular queues.  All three structures support the following functionality:
      上述宏用于定义和操作 3 种类型的数据结构:list 、 tail queue 和 circular queue 。这 3 中数据结构均支持下述功能:
            1.   Insertion of a new entry at the head of the list.
            2.   Insertion of a new entry after any element in the list.
            3.   Removal of any entry in the list.
            4.   Forward traversal through the list.
            1. 可以在 list 头处插入新的 entry 。
            2. 可以在 list 中任意元素后插入新的 entry 。
            3. 可以从 list 中移除任意 entry 。
            4. 可以对 list 进行前向遍历。
 
      Lists are the simplest of the three data structures and support only the above functionality.
      list 是上述 3 种数据结构中最简单的,且仅支持上述功能。
 
      Tail queues add the following functionality:
      tail queue 增加了下述功能:
            1.   Entries can be added at the end of a list.
            1. 可以在 list 的最后增加 entry 。
      However:
      但是:
            1.   All list insertions and removals must specify the head of the list.
            2.   Each head entry requires two pointers rather than one.
            3.   Code size is about 15% greater and operations run about 20% slower than lists.
            1. 所有的 list 插入和移除操作均必须提供 list 的头指针。
            2. 每一个 head entry 都要求含有两个指针,而不是一个指针。
            3. 与 list 相比,代码量增加大约 15% ,运算速度减慢大约 20% 。
 
 
      Circular queues add the following functionality:
      circular queue 增加了下述功能:
            1.   Entries can be added at the end of a list.
            2.   Entries can be added before another entry.
            3.   They may be traversed backwards, from tail to head .
            1. 可以在 list 的最后增加 entry 。
            2. 可以在任意其他的 entry 之前增加 entry 。
            3. 可以进行后向遍历,即从 queue 尾到 queue 头。
      However:
      但是:
            1.   All list insertions and removals must specify the head of the list.
            2.   Each head entry requires two pointers rather than one.
            3.   The termination condition for traversal is more complex.
            4.   Code size is about 40% greater and operations run about 45% slower than lists.
            1. 所有的 list 插入和移除操作均必须提供 list 的头指针。
            2. 每一个 head entry 都要求含有两个指针,而不是一个指针。
            3. 遍历的终止条件更加复杂。
            4. 与 list 相比,代码量增加大约 40% ,运算速度减慢大约 45% 。
 
      In the macro definitions, TYPE is the name of a user defined structure, that must contain a field of type LIST_ENTRY, TAILQ_ENTRY, or CIRCLEQ_ENTRY, named NAME.  The argument HEADNAME is the name of a user defined structure that must be declared using the macros LIST_HEAD, TAILQ_HEAD, or CIRCLEQ_HEAD.  See the examples below for further explanation of how these macros are used.
      在上述宏定义中,TYPE 是用户定义结构的名字,且该结构中含有类型为 LIST_ENTRY 、TAILQ_ENTRY ,或 CIRCLEQ_ENTRY 的域,且命名为 NAME 。参数 HEADNAME 是用户定义结构的名字,其必须事先通过宏 LIST_HEAD 、TAILQ_HEAD ,或 CIRCLEQ_HEAD 定义好。详细信息可以参考下面的例子。
 
 
 
 
LISTS
      A list is headed by a structure defined by the LIST_HEAD macro.  This structure contains a single pointer to the first element on the list.  The elements are doubly linked so that an arbitrary element can be removed without traversing the list.  New elements can be added to the list after an existing element or at the head of the list.
      list 可通过由宏 LIST_HEAD 定义的结构进行访问操作。该结构包含单独一个指针指向 list 的头部。list 中的元素以双链表的方式进行组织,故无需遍历 list 就可将任意元素删除。新元素可以添加到 list 中指定元素的后边,或者 list 的尾部。
      
      A LIST_HEAD structure is declared as follows:
      声明一个 LIST_HEAD 结构如下:
 
            LIST_HEAD(HEADNAME, TYPE) head ;
 
      where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be linked into the list.  A pointer to the head of the list can later be declared as:
      其中 HEADNAME 是要定义的结构的名字,而 TYPE 用于表示将在 list 表中进行链接的元素的类型。指向 list 头的指针可以按如下方式进行声明:
 
            struct HEADNAME *headp;
 
      (The names head and headp are user selectable.)
 
      The macro LIST_ENTRY declares a structure that connects the elements in the list.
      宏 LIST_ENTRY 声明用于在 list 中将元素链接起来的结构。
 
      The macro LIST_INIT initializes the list referenced by head .
      宏 LIST_INIT 用于初始化由 head 指向的 list 。
 
      The macro LIST_INSERT_HEAD inserts the new element elm at the head of the list.
      宏 LIST_INSERT_HEAD 用于在 list 头部插入新元素。
 
      The macro LIST_INSERT_AFTER inserts the new element elm after the element listelm.
      宏 LIST_INSERT_AFTER 用于在指定元素后插入新元素。
 
      The macro LIST_REMOVE removes the element elm from the list.
      宏 LIST_REMOVE 用于从 list 中移除元素。
 
LIST EXAMPLE
list 操作范例
 
      LIST_HEAD(listhead, entry) head ;
      struct listhead *headp;         /* List head . */
      struct entry {
              ...
              LIST_ENTRY(entry) entries;      /* List. */
              ...
      } *n1, *n2, *np;
 
      LIST_INIT(& head );                       /* Initialize the list. */
 
      n1 = malloc(sizeof(struct entry));      /* Insert at the head . */
      LIST_INSERT_HEAD(& head , n1, entries);
 
      n2 = malloc(sizeof(struct entry));      /* Insert after. */
      LIST_INSERT_AFTER(n1, n2, entries);
                                              /* Forward traversal. */
      for (np = head .lh_first; np != NULL; np = np->entries.le_next)
              np-> ...
 
      while ( head .lh_first != NULL)           /* Delete. */
              LIST_REMOVE( head .lh_first, entries);
 
 
 
 
TAIL QUEUES
      A tail queue is headed by a structure defined by the TAILQ_HEAD macro.  This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue.  The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue.  New elements can be added to the tail queue after an existing element, at the head of the tail queue, or at the end of the tail queue.  A TAILQ_HEAD structure is declared as follows:
      tail queue 可通过由宏 TAILQ_HEAD 定义的结构进行访问操作。该结构包含一对指针,一个指向 tail queue 的头部,一个指向 tail queue 的尾部。 tail queue 中的元素以双链表的方式进行组织,故无需遍历 tail queue 就可将任意元素删除。新元素可以添加到指定元素的后边、 tail queue 的头部、或者 tail queue 的尾部。TAILQ_HEAD 结构的声明如下:
 
            TAILQ_HEAD(HEADNAME, TYPE) head ;
 
      where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be linked into the tail queue.  A pointer to the head of the tail queue can later be declared as:
      其中 HEADNAME 是要定义的结构的名字,TYPE 是链接进该 tail queue 的元素的类型。指向 tail queue 头部的指针可按如下方式声明:
 
            struct HEADNAME *headp;
 
      (The names head and headp are user selectable.)
 
      The macro TAILQ_ENTRY declares a structure that connects the elements in the tail queue.
      宏 TAILQ_ENTRY 声明用于在 tail queue 中将元素链接起来的结构。
 
      The macro TAILQ_INIT initializes the tail queue referenced by head .
      宏 TAILQ_INIT 用于初始化由 head 指向的 tail queue 。
 
      The macro TAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue.
      宏 TAILQ_INSERT_HEAD 用于在 tail queue 头部插入新元素。
 
      The macro TAILQ_INSERT_TAIL inserts the new element elm at the end of the tail queue.
      宏 TAILQ_INSERT_TAIL 用于在 tail queue 尾部插入新元素。
 
      The macro TAILQ_INSERT_AFTER inserts the new element elm after the element listelm.
      宏 TAILQ_INSERT_AFTER 用于在指定元素后插入新元素。
 
      The macro TAILQ_REMOVE removes the element elm from the tail queue.
      宏 TAILQ_REMOVE 用于从 tail queue 中移除元素。
 
 
TAIL QUEUE EXAMPLE
TAIL QUEUE 操作范例
 
      TAILQ_HEAD(tailhead, entry) head ;
      struct tailhead *headp;         /* Tail queue head . */
      struct entry {
              ...
              TAILQ_ENTRY(entry) entries;     /* Tail queue. */
              ...
      } *n1, *n2, *np;
 
      TAILQ_INIT(& head );                      /* Initialize the queue. */
 
      n1 = malloc(sizeof(struct entry));      /* Insert at the head . */
      TAILQ_INSERT_HEAD(& head , n1, entries);
 
      n1 = malloc(sizeof(struct entry));      /* Insert at the tail . */
      TAILQ_INSERT_TAIL(& head , n1, entries);
 
      n2 = malloc(sizeof(struct entry));      /* Insert after. */
      TAILQ_INSERT_AFTER(& head , n1, n2, entries);
                                              /* Forward traversal. */
      for (np = head .tqh_first; np != NULL; np = np->entries.tqe_next)
              np-> ...
                                              /* Delete. */
      while ( head .tqh_first != NULL)
              TAILQ_REMOVE(& head , head .tqh_first, entries);
 
 
 
CIRCULAR QUEUES
      A circular queue is headed by a structure defined by the CIRCLEQ_HEAD macro.  This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue.  New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue.  A CIRCLEQ_HEAD structure is declared as follows:
      circular queue 可通过由宏 CIRCLEQ_HEAD 定义的结构进行访问操作。该结构包含一对指针,一个指向 circular queue 的头部,一个指向 circular queue 的尾部。circular queue 中的元素以双链表的方式进行组织,故无需遍历 circular queue 就可将任意元素删除。新元素可以添加到指定元素的后边、前面、circular queue 的头部、或者 tail queue 的尾部。CIRCLEQ_HEAD 结构的声明如下:
 
            CIRCLEQ_HEAD(HEADNAME, TYPE) head ;
 
      where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be linked into the circular queue.  A pointer to the head of the circular queue can later be declared as:
      其中 HEADNAME 是要定义的结构的名字,TYPE 是链接进该 circular queue 的元素的类型。指向 tail queue 头部的指针可按如下方式声明:
 
            struct HEADNAME *headp;
 
      (The names head and headp are user selectable.)
 
      The macro CIRCLEQ_ENTRY declares a structure that connects the elements in the circular queue.
      宏 CIRCLEQ_ENTRY 声明用于在 circular queue 中将元素链接起来的结构。
 
      The macro CIRCLEQ_INIT initializes the circular queue referenced by head .
      宏 CIRCLEQ_INIT 用于初始化由 head 指向的 circular queue 。
 
      The macro CIRCLEQ_INSERT_HEAD inserts the new element elm at the head of the circular queue.
      宏 CIRCLEQ_INSERT_HEAD 用于在 circular queue 头部插入新元素。
 
      The macro CIRCLEQ_INSERT_TAIL inserts the new element elm at the end of the circular queue.
      宏 CIRCLEQ_INSERT_TAIL 用于在 circular queue 尾部插入新元素。
 
      The macro CIRCLEQ_INSERT_AFTER inserts the new element elm after the element listelm.
      宏 CIRCLEQ_INSERT_AFTER 用于在指定元素后插入新元素。
 
      The macro CIRCLEQ_INSERT_BEFORE inserts the new element elm before the element listelm.
      宏 CIRCLEQ_INSERT_BEFORE 用于在指定元素后插入新元素。
 
      The macro CIRCLEQ_REMOVE removes the element elm from the circular queue.
      宏 CIRCLEQ_REMOVE 用于从 circular queue 中移除元素。
 
 
CIRCULAR QUEUE EXAMPLE
CIRCULAR QUEUE 操作范例
 
      CIRCLEQ_HEAD(circleq, entry) head ;
      struct circleq *headp;                  /* Circular queue head . */
      struct entry {
              ...
              CIRCLEQ_ENTRY(entry) entries;           /* Circular queue. */
              ...
      } *n1, *n2, *np;
 
      CIRCLEQ_INIT(& head );                    /* Initialize the circular queue. */
 
      n1 = malloc(sizeof(struct entry));      /* Insert at the head . */
      CIRCLEQ_INSERT_HEAD(& head , n1, entries);
 
      n1 = malloc(sizeof(struct entry));      /* Insert at the tail . */
      CIRCLEQ_INSERT_TAIL(& head , n1, entries);
 
      n2 = malloc(sizeof(struct entry));      /* Insert after. */
      CIRCLEQ_INSERT_AFTER(& head , n1, n2, entries);
 
      n2 = malloc(sizeof(struct entry));      /* Insert before. */
      CIRCLEQ_INSERT_BEFORE(& head , n1, n2, entries);
                                              /* Forward traversal. */
      for (np = head .cqh_first; np != (void *)& head ; np = np->entries.cqe_next)
              np-> ...
                                              /* Reverse traversal. */
      for (np = head .cqh_last; np != (void *)& head ; np = np->entries.cqe_prev)
              np-> ...
                                              /* Delete. */
      while ( head .cqh_first != (void *)& head )
              CIRCLEQ_REMOVE(& head , head .cqh_first, entries);
 
CONFORMING TO
      Not in POSIX.1-2001.  Present on the BSDs.  The queue functions first appeared in 4.4BSD.
 
4BSD                           January 24, 1994                           4BSD
(END)
       经查证,BSD 的 queue 实现在诸多开源库中均有出现,比如 libevent、twemproxy、twemperf 和 twemcache 。其中的封装大同小异。   具体的使用方法可以参考上面 man 命令给出的示例程序,也可以参考上述开源实现中的用法。   唯一要说明的是,   BSD queue 的实现中不涉及任何锁相关操作   ,故在实际使用中需按情况进行相应改动。

======== 2013-11-29 更新 =========
libevent 的源码中也包含对 queue.h 的兼容实现头文件。一般存在于  libevent-x.x.xx-stable\compat\sys 目录下。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
3月前
|
网络协议 Linux 编译器
【原创】EtherCAT主站IgH解析(二)-- 如何将Igh移植到Linux/Windows/RTOS等多操作系统移植指南
EtherCAT主站方案对比:商业的如Acontis、TwinCAT3和开源的igh、SOEM。SOEM易移植但功能和实时性不足,适合简单应用;igh功能强大,实时性能优秀,基于内核态,适合复杂场景。igh能移植到其他RTOS,但需克服多任务无调度的挑战。依赖操作系统服务如定时器、内存分配,适合Linux内核,但移植到裸机复杂。
118 0
|
4月前
|
Linux API C语言
【Linux网络的POSIX API】持续更新中
【Linux网络的POSIX API】持续更新中
|
Unix Linux Apache
一图秒懂开源许可证协议-GPL、BSD、MIT、Mozilla、Apache,LGPL
一图秒懂开源许可证协议-GPL、BSD、MIT、Mozilla、Apache,LGPL
1416 0
一图秒懂开源许可证协议-GPL、BSD、MIT、Mozilla、Apache,LGPL
|
安全 Linux
GNU Call 开源的Skype替代项目
3月21日,来自国外媒体的报道,为了创建替代Skype的开源软件,GNU Project 宣布计划GNU Call,该项目希望提供安全的在线呼叫给所有的用户,与流行的Skype VoIP服务竞争。 GNU 项目,提供了一系列的自由软件,包括流行的Linux发行版。
917 0
|
SQL .NET C#
一起谈.NET技术,微软缘何认为VB与C#需要异步语法
  在过去几年间,多线程编程已经成为了一个热门话题。虽然我们长久以来一直都希望能有高速响应的用户界面,但实现这个愿望的工具却迟迟不见踪迹。对于大多数框架(包括.NET程序员所使用的那些框架)来说,对用户界面的更新仍然局限于单独一个线程,同时,硬件制造商已经转向了多核来代替更快的CPU。
980 0
|
Linux
linux |版权许可GNU和GPL
image.png image.png linux历史介绍 image.png
1307 0