Android系统匿名共享内存(Anonymous Shared Memory)C++调用接口分析(5)

简介:
下面我们再来看MemoryBase类在Client端的实现,同样,先看它们的类图关系:
     这个图中我们可以看出,MemoryBase类在Client端的实现与MemoryHeapBase类在Client端的实现是类似的,这里只要把IMemory类换成IMemoryHeap类以及把BpMemory类换成BpMemoryHeap类就变成是MemoryHeapBase类在Client端的实现了,因此,我们这里只简单分析BpMemory类的实现,前面已经分析过IMemory类的实现了。
        BpMemory类实现在frameworks/base/libs/binder/IMemory.cpp文件中,我们先看它的声明:
  1. class BpMemory : public BpInterface<IMemory>  
  2. {  
  3. public:  
  4.     BpMemory(const sp<IBinder>& impl);  
  5.     virtual ~BpMemory();  
  6.     virtual sp<IMemoryHeap> getMemory(ssize_t* offset=0, size_t* size=0) const;  
  7.   
  8. private:  
  9.     mutable sp<IMemoryHeap> mHeap;  
  10.     mutable ssize_t mOffset;  
  11.     mutable size_t mSize;  
  12. };  
       和MemoryBase类一样,它实现了IMemory类的getMemory成员函数,在它的成员变量中,mHeap的类型为IMemoryHeap,它指向的是一个BpMemoryHeap对象,mOffset表示这个BpMemory对象所要维护的这部分匿名共享内存在整个匿名共享内存块中的起始位置,mSize表示这个BpMemory对象所要维护的这部分匿名共享内存的大小。
 
       下面我们就看一下BpMemory类的成员函数getMemory的实现:
  1. sp<IMemoryHeap> BpMemory::getMemory(ssize_t* offset, size_t* size) const  
  2. {  
  3.     if (mHeap == 0) {  
  4.         Parcel data, reply;  
  5.         data.writeInterfaceToken(IMemory::getInterfaceDescriptor());  
  6.         if (remote()->transact(GET_MEMORY, data, &reply) == NO_ERROR) {  
  7.             sp<IBinder> heap = reply.readStrongBinder();  
  8.             ssize_t o = reply.readInt32();  
  9.             size_t s = reply.readInt32();  
  10.             if (heap != 0) {  
  11.                 mHeap = interface_cast<IMemoryHeap>(heap);  
  12.                 if (mHeap != 0) {  
  13.                     mOffset = o;  
  14.                     mSize = s;  
  15.                 }  
  16.             }  
  17.         }  
  18.     }  
  19.     if (offset) *offset = mOffset;  
  20.     if (size) *size = mSize;  
  21.     return mHeap;  
  22. }  
        如果成员变量mHeap的值为NULL,就表示这个BpMemory对象尚未建立好匿名共享内存,于是,就会通过一个Binder进程间调用去Server端请求匿名共享内存信息,在这些信息中,最重要的就是这个Server端的MemoryHeapBase对象的引用heap了,通过这个引用可以在Client端进程中创建一个BpMemoryHeap远程接口,最后将这个BpMemoryHeap远程接口保存在成员变量mHeap中,同时,从Server端获得的信息还包括这块匿名共享内存在整个匿名共享内存中的偏移位置以及大小。这样,这个BpMemory对象中的匿名共享内存就准备就绪了。
 
        至此,MemoryBase类的实现就分析完了,下面我们将通过一个实例来说明如何使用MemoryBase类在进程间进行内存共享,因为MemoryBase内部使用了MemoryHeapBase类,所以,这个例子同时也可以说明MemoryHeapBase类的使用方法。
        3. MemoryHeapBas类e和MemoryBase类的使用示例
        在这个例子中,我们将在Android源代码工程的external目录中创建一个ashmem源代码工程,它里面包括两个应用程序,一个是Server端应用程序SharedBufferServer,它提供一段共享内存来给Client端程序使用,一个是Client端应用程序SharedBufferClient,它简单地对Server端提供的共享内存进行读和写的操作。Server端应用程序SharedBufferServer和Client端应用程序SharedBufferClient通过Binder进程间通信机制来交互,因此,我们需要定义自己的Binder对象接口ISharedBuffer。Server端应用程序SharedBufferServer在内部实现了一个服务SharedBufferService,这个服务托管给Service Manager来管理,因此,Client端应用程序SharedBufferClient可以向Service Manager请求这个SharedBufferService服务的一个远接接口,然后就可以通过这个服务来操作Server端提供的这段共享内存了。
        这个工程由三个模块组成,第一个模块定义服务接口,它的相关源代码位于external/ashmem/common目录下,第二个模块实现Server端应用程序SharedBufferServer,它的相关源代码位于external/ashmem/server目录下,第三个模块实现Client端应用程序SharedBufferClient,它的相关源代码码位于external/ashmem/client目录下。
        首先来看common模块中的服务接口的定义。在external/ashmem/common目录下,有两个源文件ISharedBuffer.h和ISharedBuffer.cpp。源文件ISharedBuffer.h定义了服务的接口:
  1. #ifndef ISHAREDBUFFER_H_  
  2. #define ISHAREDBUFFER_H_  
  3.   
  4. #include <utils/RefBase.h>  
  5. #include <binder/IInterface.h>  
  6. #include <binder/Parcel.h>  
  7.   
  8. #define SHARED_BUFFER_SERVICE "shy.luo.SharedBuffer"  
  9. #define SHARED_BUFFER_SIZE 4  
  10.   
  11. using namespace android;  
  12.   
  13. class ISharedBuffer: public IInterface  
  14. {  
  15. public:  
  16.         DECLARE_META_INTERFACE(SharedBuffer);  
  17.         virtual sp<IMemory> getBuffer() = 0;  
  18. };  
  19.   
  20. class BnSharedBuffer: public BnInterface<ISharedBuffer>  
  21. {  
  22. public:  
  23.         virtual status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0);  
  24. };  
  25.   
  26. #endif  
        这个文件定义了一个ISharedBuffer接口,里面只有一个成员函数getBuffer,通过这个成员函数,Client端可以从Server端获得一个匿名共享内存,这块匿名共享内存通过我们上面分析的MemoryBase类来维护。这个文件同时也定义了一个必须要在Server端实现的BnSharedBuffer接口,它里面只有一个成员函数onTransact,这个成员函数是用来处理Client端发送过来的请求的。除了定义这两个接口之外,这个文件还定义了两个公共信息,一个是定义常量SHARED_BUFFER_SERVICE,它是Server端提供的内存共享服务的名称,即这个内存共享服务在Service Manager中是以SHARED_BUFFER_SERVICE来作关键字索引的,另外一个是定义常量SHARED_BUFFER_SIZE,它定义了Server端共享的内存块的大小,它的大小设置为4个字节,在这个例子,将把这个共享内存当作一个整型变量来访问。
 
        源代文件ISharedBuffer.cpp文件定义了一个在Client端使用的BpSharedBuffer接口,它是指向运行在Server端的实现了ISharedBuffer接口的内存共享服务的远程接口,同时,在这个文件里面,也实现了BnSharedBuffer类的onTransact成员函数:
  1. #define LOG_TAG "ISharedBuffer"  
  2.   
  3. #include <utils/Log.h>  
  4. #include <binder/MemoryBase.h>  
  5.   
  6. #include "ISharedBuffer.h"  
  7.   
  8. using namespace android;  
  9.   
  10. enum  
  11. {  
  12.     GET_BUFFER = IBinder::FIRST_CALL_TRANSACTION  
  13. };  
  14.   
  15. class BpSharedBuffer: public BpInterface<ISharedBuffer>  
  16. {  
  17. public:  
  18.     BpSharedBuffer(const sp<IBinder>& impl)  
  19.         : BpInterface<ISharedBuffer>(impl)  
  20.     {  
  21.   
  22.     }  
  23.   
  24. public:  
  25.     sp<IMemory> getBuffer()  
  26.     {  
  27.         Parcel data;  
  28.         data.writeInterfaceToken(ISharedBuffer::getInterfaceDescriptor());  
  29.   
  30.         Parcel reply;  
  31.         remote()->transact(GET_BUFFER, data, &reply);  
  32.   
  33.         sp<IMemory> buffer = interface_cast<IMemory>(reply.readStrongBinder());  
  34.   
  35.         return buffer;  
  36.     }  
  37. };  
  38.   
  39. IMPLEMENT_META_INTERFACE(SharedBuffer, "shy.luo.ISharedBuffer");  
  40.   
  41. status_t BnSharedBuffer::onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)  
  42. {  
  43.     switch(code)  
  44.     {  
  45.     case GET_BUFFER:  
  46.         {  
  47.             CHECK_INTERFACE(ISharedBuffer, data, reply);  
  48.   
  49.             sp<IMemory> buffer = getBuffer();  
  50.             if(buffer != NULL)  
  51.             {  
  52.                 reply->writeStrongBinder(buffer->asBinder());  
  53.             }  
  54.   
  55.             return NO_ERROR;  
  56.         }  
  57.     default:  
  58.         {  
  59.             return BBinder::onTransact(code, data, reply, flags);  
  60.         }  
  61.     }  
  62. }  
        在BpSharedBuffer类的成员函数transact中,向Server端发出了一个请求代码为GET_BUFFER的Binder进程间调用请求,请求Server端返回一个匿名共享内存对象的远程接口IMemory,它实际指向的是一个BpMemory对象,获得了这个对象之后,就将它返回给调用者;在BnSharedBuffer类的成员函数onTransact中,当它接收到从Client端发送过来的代码为GET_BUFFER的Binder进程间调用请求后,便调用其子类的getBuffer成员函数来获一个匿名共享内存对象接口IMemory,它实际指向的是一个MemoryBase对象,获得了这个对象之后,就把它返回给Client端。
 




本文转自 Luoshengyang 51CTO博客,原文链接:http://blog.51cto.com/shyluo/966920,如需转载请自行联系原作者
目录
相关文章
|
17天前
|
算法 C语言 C++
C++语言学习指南:从新手到高手,一文带你领略系统编程的巅峰技艺!
【8月更文挑战第22天】C++由Bjarne Stroustrup于1985年创立,凭借卓越性能与灵活性,在系统编程、游戏开发等领域占据重要地位。它继承了C语言的高效性,并引入面向对象编程,使代码更模块化易管理。C++支持基本语法如变量声明与控制结构;通过`iostream`库实现输入输出;利用类与对象实现面向对象编程;提供模板增强代码复用性;具备异常处理机制确保程序健壮性;C++11引入现代化特性简化编程;标准模板库(STL)支持高效编程;多线程支持利用多核优势。虽然学习曲线陡峭,但掌握后可开启高性能编程大门。随着新标准如C++20的发展,C++持续演进,提供更多开发可能性。
40 0
|
5天前
|
IDE 开发工具 Android开发
安卓与iOS开发环境对比分析
本文将探讨安卓和iOS这两大移动操作系统在开发环境上的差异,从工具、语言、框架到生态系统等多个角度进行比较。我们将深入了解各自的优势和劣势,并尝试为开发者提供一些实用的建议,以帮助他们根据自己的需求选择最适合的开发平台。
12 1
|
18天前
|
Java 开发工具 Android开发
安卓与iOS开发环境对比分析
【8月更文挑战第20天】在移动应用开发的广阔天地中,Android和iOS两大平台各自占据着重要的位置。本文将深入探讨这两种操作系统的开发环境,从编程语言到开发工具,从用户界面设计到性能优化,以及市场趋势对开发者选择的影响。我们旨在为读者提供一个全面的比较视角,帮助理解不同平台的优势与挑战,并为那些站在选择十字路口的开发者提供有价值的参考信息。
|
8天前
|
Rust 安全 C++
系统编程的未来之战:Rust能否撼动C++的王座?
【8月更文挑战第31天】Rust与C++:现代系统编程的新选择。C++长期主导系统编程,但内存安全问题频发。Rust以安全性为核心,通过所有权和生命周期概念避免内存泄漏和野指针等问题。Rust在编译时确保内存安全,简化并发编程,其生态系统虽不及C++成熟,但发展迅速,为现代系统编程提供了新选择。未来有望看到更多Rust驱动的系统级应用。
25 1
|
18天前
|
开发框架 Android开发 Swift
安卓与iOS应用开发对比分析
【8月更文挑战第20天】在移动应用开发的广阔天地中,安卓和iOS两大平台各占半壁江山。本文将深入探讨这两大操作系统在开发环境、编程语言、用户界面设计、性能优化及市场分布等方面的差异和特点。通过比较分析,旨在为开发者提供一个宏观的视角,帮助他们根据项目需求和目标受众选择最合适的开发平台。同时,文章还将讨论跨平台开发框架的利与弊,以及它们如何影响着移动应用的开发趋势。
|
18天前
|
安全 搜索推荐 Android开发
安卓与iOS应用开发的对比分析
【8月更文挑战第20天】在移动应用开发领域,安卓和iOS两大平台各领风骚。本文通过深入探讨两者的开发环境、编程语言、用户界面设计、应用市场及分发机制等方面的差异,揭示了各自的优势和挑战。旨在为开发者提供决策支持,同时帮助理解为何某些应用可能优先选择在一个平台上发布。
24 2
|
7天前
|
存储 数据可视化 C++
【C++】C++-学生考试题库管理系统(源码)
本系统设计了一个选题管理流程,包括读取题目信息、随机抽取题目、保存及查询选题结果等功能。使用 `readProjects` 从文件读取题目信息,`drawProject` 随机抽取未选中的题目,`saveSelection` 保存选题结果至文件,`querySelection` 查询并显示所有选题结果。主函数提供菜单界面,支持学生信息输入、抽题及结果查询。关注【测试开发自动化】公众号,回复“题库”获取源码。
|
25天前
|
C++ 容器
C++中自定义结构体或类作为关联容器的键
C++中自定义结构体或类作为关联容器的键
28 0
|
3天前
|
存储 编译器 C++
C ++初阶:类和对象(中)
C ++初阶:类和对象(中)
|
3天前
|
C++
C++(十六)类之间转化
在C++中,类之间的转换可以通过转换构造函数和操作符函数实现。转换构造函数是一种单参数构造函数,用于将其他类型转换为本类类型。为了防止不必要的隐式转换,可以使用`explicit`关键字来禁止这种自动转换。此外,还可以通过定义`operator`函数来进行类型转换,该函数无参数且无返回值。下面展示了如何使用这两种方式实现自定义类型的相互转换,并通过示例代码说明了`explicit`关键字的作用。

热门文章

最新文章

下一篇
DDNS