Android系统的开机画面显示过程分析(5)

简介:

 2. 第二个开机画面的显示过程

      由于第二个开机画面是在init进程启动的过程中显示的,因此,我们就从init进程的入口函数main开始分析第二个开机画面的显示过程。
      init进程的入口函数main实现在文件system/core/init/init.c中,如下所示:
 
 
  1. int main(int argc, char **argv)   
  2. {   
  3.     int fd_count = 0;   
  4.     struct pollfd ufds[4];   
  5.     ......   
  6.     int property_set_fd_init = 0;   
  7.     int signal_fd_init = 0;   
  8.     int keychord_fd_init = 0;   
  9.    
  10.     if (!strcmp(basename(argv[0]), "ueventd"))   
  11.         return ueventd_main(argc, argv);   
  12.    
  13.     ......   
  14.    
  15.     queue_builtin_action(console_init_action, "console_init");   
  16.    
  17.     ......   
  18.    
  19.     for(;;) {   
  20.         int nr, i, timeout = -1;   
  21.    
  22.         execute_one_command();   
  23.         restart_processes();   
  24.    
  25.         if (!property_set_fd_init && get_property_set_fd() > 0) {   
  26.             ufds[fd_count].fd = get_property_set_fd();   
  27.             ufds[fd_count].events = POLLIN;   
  28.             ufds[fd_count].revents = 0;   
  29.             fd_count++;   
  30.             property_set_fd_init = 1;   
  31.         }   
  32.         if (!signal_fd_init && get_signal_fd() > 0) {   
  33.             ufds[fd_count].fd = get_signal_fd();   
  34.             ufds[fd_count].events = POLLIN;   
  35.             ufds[fd_count].revents = 0;   
  36.             fd_count++;   
  37.             signal_fd_init = 1;   
  38.         }   
  39.         if (!keychord_fd_init && get_keychord_fd() > 0) {   
  40.             ufds[fd_count].fd = get_keychord_fd();   
  41.             ufds[fd_count].events = POLLIN;   
  42.             ufds[fd_count].revents = 0;   
  43.             fd_count++;   
  44.             keychord_fd_init = 1;   
  45.         }   
  46.    
  47.         if (process_needs_restart) {   
  48.             timeout = (process_needs_restart - gettime()) * 1000;   
  49.             if (timeout < 0)   
  50.                 timeout = 0;   
  51.         }   
  52.    
  53.         if (!action_queue_empty() || cur_action)   
  54.             timeout = 0;   
  55.    
  56.         ......   
  57.    
  58.         nr = poll(ufds, fd_count, timeout);   
  59.         if (nr <= 0)   
  60.             continue;   
  61.    
  62.         for (i = 0; i < fd_count; i++) {   
  63.             if (ufds[i].revents == POLLIN) {   
  64.                 if (ufds[i].fd == get_property_set_fd())   
  65.                     handle_property_set_fd();   
  66.                 else if (ufds[i].fd == get_keychord_fd())   
  67.                     handle_keychord();   
  68.                 else if (ufds[i].fd == get_signal_fd())   
  69.                     handle_signal();   
  70.             }   
  71.         }   
  72.     }   
  73.    
  74.     return 0;   
  75. }   
         函数一开始就首先判断参数argv[0]的值是否等于“ueventd”,即当前正在启动的进程名称是否等于“ueventd”。如果是的话,那么就以ueventd_main函数来作入口函数。这是怎么回事呢?当前正在启动的进程不是init吗?它的名称怎么可能会等于“ueventd”?原来,在目标设备上,可执行文件/sbin/ueventd是可执行文件/init的一个符号链接文件,即应用程序ueventd和init运行的是同一个可执行文件。内核启动完成之后,可执行文件/init首先会被执行,即init进程会首先被启动。init进程在启动的过程中,会对启动脚本/init.rc进行解析。在启动脚本/init.rc中,配置了一个ueventd进程,它对应的可执行文件为/sbin/ueventd,即ueventd进程加载的可执行文件也为/init。因此,通过判断参数argv[0]的值,就可以知道当前正在启动的是init进程还是ueventd进程。        
          ueventd进程是作什么用的呢?它是用来处理uevent事件的,即用来管理系统设备的。从前面的描述可以知道,它真正的入口函数为ueventd_main,实现在system/core/init/ueventd.c中。ueventd进程会通过一个socket接口来和内核通信,以便可以监控系统设备事件。例如,在前面 在Ubuntu上为Android系统编写Linux内核驱动程序 一文中, 我们调用device_create函数来创建了一个名称为“hello”的字符设备,这时候内核就会向前面提到的socket发送一个设备增加事件。ueventd进程通过这个socket获得了这个设备增加事件之后,就会/dev目录下创建一个名称为“hello”的设备文件。这样用户空间的应用程序就可以通过设备文件/dev/hello来和驱动程序hello进行通信了。

        接下来调用另外一个函数queue_builtin_action来向init进程中的一个待执行action队列增加了一个名称等于“console_init”的action。这个action对应的执行函数为console_init_action,它就是用来显示第二个开机画面的。

        函数queue_builtin_action实现在文件system/core/init/init_parser.c文件中,如下所示:

 
 
  1. static list_declare(action_list);   
  2. static list_declare(action_queue);   
  3.    
  4. void queue_builtin_action(int (*func)(int nargs, char **args), char *name)   
  5. {   
  6.     struct action *act;   
  7.     struct command *cmd;   
  8.    
  9.     act = calloc(1, sizeof(*act));   
  10.     act->name = name;   
  11.     list_init(&act->commands);   
  12.    
  13.     cmd = calloc(1, sizeof(*cmd));   
  14.     cmd->func = func;   
  15.     cmd->args[0] = name;   
  16.     list_add_tail(&act->commands, &cmd->clist);   
  17.    
  18.     list_add_tail(&action_list, &act->alist);   
  19.     action_add_queue_tail(act);   
  20. }   
  21.    
  22. void action_add_queue_tail(struct action *act)   
  23. {   
  24.     list_add_tail(&action_queue, &act->qlist);   
  25. }   

       action_list列表用来保存从启动脚本/init.rc解析得到的一系列action,以及一系列内建的action。当这些action需要执行的时候,它们就会被添加到action_queue列表中去,以便init进程可以执行它们。

 

       回到init进程的入口函数main中,最后init进程会进入到一个无限循环中去。在这个无限循环中,init进程会做以下五个事情:

       A. 调用函数execute_one_command来检查action_queue列表是否为空。如果不为空的话,那么init进程就会将保存在列表头中的action移除,并且执行这个被移除的action。由于前面我们将一个名称为“console_init”的action添加到了action_queue列表中,因此,在这个无限循环中,这个action就会被执行,即函数console_init_action会被调用。

       B. 调用函数restart_processes来检查系统中是否有进程需要重启。在启动脚本/init.rc中,我们可以指定一个进程在退出之后会自动重新启动。在这种情况下,函数restart_processes就会检查是否存在需要重新启动的进程,如果存在的话,那么就会将它重新启动起来。

       C. 处理系统属性变化事件。当我们调用函数property_set来改变一个系统属性值时,系统就会通过一个socket(通过调用函数get_property_set_fd可以获得它的文件描述符)来向init进程发送一个属性值改变事件通知。init进程接收到这个属性值改变事件之后,就会调用函数handle_property_set_fd来进行相应的处理。后面在分析第三个开机画面的显示过程时,我们就会看到,SurfaceFlinger服务就是通过修改“ctl.start”和“ctl.stop”属性值来启动和停止第三个开机画面的。

       D. 处理一种称为“chorded keyboard”的键盘输入事件。这种类型为chorded keyboard”的键盘设备通过不同的铵键组合来描述不同的命令或者操作,它对应的设备文件为/dev/keychord。我们可以通过调用函数get_keychord_fd来获得这个设备的文件描述符,以便可以监控它的输入事件,并且调用函数handle_keychord来对这些输入事件进行处理。

       E. 回收僵尸进程。我们知道,在Linux内核中,如果父进程不等待子进程结束就退出,那么当子进程结束的时候,就会变成一个僵尸进程,从而占用系统的资源。为了回收这些僵尸进程,init进程会安装一个SIGCHLD信号接收器。当那些父进程已经退出了的子进程退出的时候,内核就会发出一个SIGCHLD信号给init进程。init进程可以通过一个socket(通过调用函数get_signal_fd可以获得它的文件描述符)来将接收到的SIGCHLD信号读取回来,并且调用函数handle_signal来对接收到的SIGCHLD信号进行处理,即回收那些已经变成了僵尸的子进程。

      注意,由于后面三个事件都是可以通过文件描述符来描述的,因此,init进程的入口函数main使用poll机制来同时轮询它们,以便可以提高效率。





本文转自 Luoshengyang 51CTO博客,原文链接:http://blog.51cto.com/shyluo/967033,如需转载请自行联系原作者
目录
相关文章
|
2月前
|
开发框架 前端开发 Android开发
Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势
本文深入探讨了 Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势。这对于实现高效的跨平台移动应用开发具有重要指导意义。
235 4
|
2月前
|
人工智能 搜索推荐 物联网
Android系统版本演进与未来展望####
本文深入探讨了Android操作系统从诞生至今的发展历程,详细阐述了其关键版本迭代带来的创新特性、用户体验提升及对全球移动生态系统的影响。通过对Android历史版本的回顾与分析,本文旨在揭示其成功背后的驱动力,并展望未来Android可能的发展趋势与面临的挑战,为读者呈现一个既全面又具深度的技术视角。 ####
|
2月前
|
安全 Android开发 数据安全/隐私保护
深入探讨iOS与Android系统安全性对比分析
在移动操作系统领域,iOS和Android无疑是两大巨头。本文从技术角度出发,对这两个系统的架构、安全机制以及用户隐私保护等方面进行了详细的比较分析。通过深入探讨,我们旨在揭示两个系统在安全性方面的差异,并为用户提供一些实用的安全建议。
|
2月前
|
IDE Java 开发工具
移动应用与系统:探索Android开发之旅
在这篇文章中,我们将深入探讨Android开发的各个方面,从基础知识到高级技术。我们将通过代码示例和案例分析,帮助读者更好地理解和掌握Android开发。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和技巧。让我们一起开启Android开发的旅程吧!
|
1月前
|
监控 Java Android开发
深入探索Android系统的内存管理机制
本文旨在全面解析Android系统的内存管理机制,包括其工作原理、常见问题及其解决方案。通过对Android内存模型的深入分析,本文将帮助开发者更好地理解内存分配、回收以及优化策略,从而提高应用性能和用户体验。
|
1月前
|
Java 开发工具 Android开发
安卓与iOS开发环境对比分析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自占据半壁江山。本文深入探讨了这两个平台的开发环境,从编程语言、开发工具到用户界面设计等多个角度进行比较。通过实际案例分析和代码示例,我们旨在为开发者提供一个清晰的指南,帮助他们根据项目需求和个人偏好做出明智的选择。无论你是初涉移动开发领域的新手,还是寻求跨平台解决方案的资深开发者,这篇文章都将为你提供宝贵的信息和启示。
33 8
|
1月前
|
存储 安全 Android开发
探索Android系统的最新安全特性
在数字时代,智能手机已成为我们生活中不可或缺的一部分。随着技术的不断进步,手机操作系统的安全性也越来越受到重视。本文将深入探讨Android系统最新的安全特性,包括其设计理念、实施方式以及对用户的影响。通过分析这些安全措施如何保护用户免受恶意软件和网络攻击的威胁,我们希望为读者提供对Android安全性的全面了解。
|
2月前
|
监控 Java Android开发
深入探讨Android系统的内存管理机制
本文将深入分析Android系统的内存管理机制,包括其内存分配、回收策略以及常见的内存泄漏问题。通过对这些方面的详细讨论,读者可以更好地理解Android系统如何高效地管理内存资源,从而提高应用程序的性能和稳定性。
92 16
|
2月前
|
安全 Android开发 iOS开发
深入探讨Android与iOS系统的差异及未来发展趋势
本文旨在深入分析Android和iOS两大移动操作系统的核心技术差异、用户体验以及各自的市场表现,进一步探讨它们在未来技术革新中可能的发展方向。通过对比两者的开放性、安全性、生态系统等方面,本文揭示了两大系统在移动设备市场中的竞争态势和潜在变革。
|
2月前
|
安全 Android开发 数据安全/隐私保护
深入探索Android与iOS系统安全性的对比分析
在当今数字化时代,移动操作系统的安全已成为用户和开发者共同关注的重点。本文旨在通过比较Android与iOS两大主流操作系统在安全性方面的差异,揭示两者在设计理念、权限管理、应用审核机制等方面的不同之处。我们将探讨这些差异如何影响用户的安全体验以及可能带来的风险。
55 1