例解EIGRP DUAL网络收敛原理

简介:

以下内容摘自正在全面热销的最新网络设备图书“豪华四件套”之一《Cisco路由器配置与管理完全手册》(第二版(其余三本分别是:《Cisco交换机配置与管理完全手册》(第二版《H3C交换机配置与管理完全手册》(第二版 和《H3C路由器配置与管理完全手册》(第二版 )。目前在京东网、当当网、卓越网、互动出版网等书店全面热销中,购买该套装将直减30元http://book.dangdang.com/20130730_aifehttp://item.jd.com/11299332.html

EIGRP是一个平衡混合型路由协议,既有像RIP那样的距离矢量路由协议的特点:有路由跳数的限制,路由信息依靠邻居路由器通告,遵守路由水平分割和反向毒化水平分割规则,路由自动汇总;又有像OSPF那样的链路状态路由协议的特点:当路由信息发生变化时,采用增量更新的方式,保留对网络拓扑信息、同时采用距离矢量和链路状态两种算法来计算路由开销。同时,该协议又具有自己独特的特点:支持非对等开销路由上的负载均衡,采用DUAL算法在确保无路由环路的前提下,收敛迅速。因而适用于中大型网络。但前面提到的IGRP是是距离矢量路由协议。

EIGRP采用的是DUAL(Diffusing Update Algorithm,扩散更新算法)。这个算法可以确保在极短时间内无环路计算出路由结果,并且允许所有与拓扑改变相关的设备在同一时间进行同步更新。不受拓扑结构改变的路由器不会进行重新计算。这种收敛效率要远比其他已存的路由协议要高。


11.1.6 DUAL算法网络收敛原理解析示例二

本节再以一个稍微复杂的EIGRP网络收敛为例介绍UDAL的工作原理。本示例拓扑结构如图11-8的左图所示,其中Router C、Router D和Router E是当前处于收敛状态时的拓扑表。

144313610.jpg

图11-8 DUAL网络收敛原理解析示例二拓扑结构及拓扑表

从图中的拓扑表中可以看出,Router C、Router D和Router E这三台路由器至少有一个通告度量(AD)小于它们自己的有限距离(FD)的有效路由到达Router A所连接的网络(a)。其中标注为“Successor”的为当前Successor,标注为“fs”为可行后续。从中可以看出,这三台路由器中仅Router C有一个备份用的FS,即Router D,其它两个路由器均只有一个正在使用的Successor,如图11-9所示。

144334500.jpg

图11-9 收敛状态时的三台路由器上到达目的网络的Successor和FS

此时,Router C标识通过Router B的路由作为当前使用的路由,因为这条路由的AD=1,小于Router C上到达网络(a)的FD值3。Router C同时也标识通过Router D的路由作为备份使用的FS路由,因为这条路由的AD=2,小于Router C上到达网络(a)的FD值3。但是通过Router E的路由不能作为FS路由,因为这条路由的AD=3,与Router C上到达网络(a)的FD值3相等,不符合成为FS的条件。

Router D标识通过Router B的路由作为当前使用的路由,因为这条路由的AD=1,小于Router D上到达网络(a)的FD值2。但在Router D中,通过Router C的路由也不能作为FS路由,因为这条路由的AD=3,大于Router D上到达网络(a)的FD值2,不符合成为FS的条件。

Router E标识通过Router D的路由作为当前使用的路由,因为这条路由的AD=2,小于Router E上到达网络(a)的FD值3。但在Router E中,通过Router C的路由也不能作为FS路由,因为这条路由的AD=3,等于Router E上到达网络(a)的FD值3,不符合成为FS的条件。

现假设Router D与Router B之间的链路断了。从前面的Router D拓扑表可以知道,它原来只有Router B这一个Successor,没有其它FS,所以Router D需要使用DUAL计算新的路由到达网络(a)。同时从拓扑表中删除通过Router B到达网络(a)的拓扑表项,如图11-10所示。

144351977.jpg

图11-10 断开Router D与Router B之间的链后,Router D删除通过Router B的拓扑表项

此时Router D因为没有可到达网络(a)的可行路径了,所以成为活跃状态(Active),开始向它的其它两个邻居路由器Router C和Router E发送查询包,声明自己没有到达网络(a)的FS了,问它们是否有可替代的路径。当Router E收到这个来自同时为自己的Successor的Router D的查询包后,从自己的拓扑表中删除通过Router D到达网络(a)所对应的拓扑表项。如图11-11所示。

10659021_1379810303CBb6.jpg

图11-11 Router D成为活跃状态,Router E删除通过Router D的拓扑表项

因为此时Router E已再也没有其它路径到达网络(a)了,所以Router E也转换为活跃状态。而当Router C收来这个来自为自己FS的Router D的查询包后,从自己的拓扑表中删除通过Router D到达网络(a)所对应的拓扑表项。但是它不会转换为活跃状态,因为它此时仍有SuccessorRouter B可以到达网络(a)。然后,Router C对Router D的查询进行响应,告诉Router D它还有一条有效的路径到达网络(a)。但此时Router E也为活跃状态了,所以它在收到来自Router D的查询包后仅转发到Router C,询问是否有替代路径到达网络(a)。如图11-12所示。

10659021_13798103151vzg.jpg

图11-12 Router E成为活跃状态,Router C删除通过Router D的拓扑表项

Router D在收到Router C发来的应答包后,在自己的拓扑表中添加Router C的拓扑表项,同时标识Router C为Successor。与此同时,Router C会对Router E发来的查询包进行响应,同样告诉它有一条路径可以达到网络(a)。这样Router E也会把Router C作为Successor,并向Router D应答,此时的从原来的3改变成了4。如图11-13所示。

10659021_1379810328f0S0.jpg

图11-13 Router D添加通过Router C和Router E的拓扑表项,Router E添加通过Router C的拓扑表项

当Router D收到Router E发来的应答后(一直要等到收到所有邻居路由器发来的应答),更新拓扑表。此时它有两条可行的路径到达网络(a),一条是以Router C为当前Successor的路径,另一条是以Router E为FS的备用路径。此时的从原来的2改变成了5。如图11-14所示。

10659021_1379810365C3RR.jpg

图11-14 网络重新收敛后的拓扑结构和拓扑表

本文转自王达博客51CTO博客,原文链接http://blog.51cto.com/winda/1299912如需转载请自行联系原作者

茶乡浪子
相关文章
|
2月前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
70 3
|
3月前
|
并行计算 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基本概念、技术原理及其潜在应用。通过对量子纠缠、量子叠加和量子隐形传态等核心概念的解释,文章展示了量子互联网如何利用量子力学特性来实现超高速、超高安全性的通信。此外,还讨论了量子互联网在金融、医疗、国防等领域的应用前景,以及当前面临的技术挑战和未来的发展方向。
86 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络的核心原理
本文将深入浅出地介绍深度学习的基本概念,包括神经网络的结构、工作原理以及训练过程。我们将从最初的感知机模型出发,逐步深入到现代复杂的深度网络架构,并探讨如何通过反向传播算法优化网络权重。文章旨在为初学者提供一个清晰的深度学习入门指南,同时为有经验的研究者回顾和巩固基础知识。
85 11
|
1月前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
60 3
|
1月前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
2月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
205 1
|
2月前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
2月前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
2月前
|
存储 安全 自动驾驶
探索未来网络:量子互联网的原理与应用
【10月更文挑战第2天】 本文旨在探讨量子互联网的基本原理、技术实现及其在通讯领域的革命性应用前景。量子互联网利用量子力学原理,如量子叠加和量子纠缠,来传输信息,有望大幅提升通信的安全性和速度。通过详细阐述量子密钥分发(QKD)、量子纠缠交换和量子中继等关键技术,本文揭示了量子互联网对未来信息社会的潜在影响。
|
2月前
|
人工智能 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基础原理、关键技术及其在未来通信领域的应用前景。通过分析量子纠缠、量子叠加等核心概念,揭示了量子互联网相较于传统互联网的优势所在。同时,文章还讨论了当前量子互联网领域面临的技术挑战和解决方案,为读者呈现了一个关于量子互联网的全面且深入的视角。
68 6