ES搜索排序,文档相关度评分介绍——Field-length norm

简介:

Field-length norm

How long is the field? The shorter the field, the higher the weight. If a term appears in a short field, such as a title field, it is more likely that the content of that field is about the term than if the same term appears in a much bigger body field. The field length norm is calculated as follows:

norm(d) = 1 / √numTerms 

The field-length norm (norm) is the inverse square root of the number of terms in the field.

While the field-length norm is important for full-text search, many other fields don’t need norms. Norms consume approximately 1 byte per string field per document in the index, whether or not a document contains the field. Exact-value not_analyzed string fields have norms disabled by default, but you can use the field mapping to disable norms on analyzed fields as well:

PUT /my_index
{
  "mappings": { "doc": { "properties": { "text": { "type": "string", "norms": { "enabled": false }  } } } } }

This field will not take the field-length norm into account. A long field and a short field will be scored as if they were the same length.

For use cases such as logging, norms are not useful. All you care about is whether a field contains a particular error code or a particular browser identifier. The length of the field does not affect the outcome. Disabling norms can save a significant amount of memory.

Putting it together

These three factors—term frequency, inverse document frequency, and field-length norm—are calculated and stored at index time. Together, they are used to calculate the weight of a single term in a particular document.

Tip

When we refer to documents in the preceding formulae, we are actually talking about a field within a document. Each field has its own inverted index and thus, for TF/IDF purposes, the value of the field is the value of the document.

When we run a simple term query with explain set to true (see Understanding the Score), you will see that the only factors involved in calculating the score are the ones explained in the preceding sections:

PUT /my_index/doc/1 { "text" : "quick brown fox" } GET /my_index/doc/_search?explain { "query": { "term": { "text": "fox" } } }

The (abbreviated) explanation from the preceding request is as follows:

weight(text:fox in 0) [PerFieldSimilarity]:  0.15342641 
result of:
    fieldWeight in 0                         0.15342641
    product of:
        tf(freq=1.0), with freq of 1:        1.0 
        idf(docFreq=1, maxDocs=1):           0.30685282 
        fieldNorm(doc=0):                    0.5 

The final score for term fox in field text in the document with internal Lucene doc ID 0.

The term fox appears once in the text field in this document.

The inverse document frequency of fox in the text field in all documents in this index.

The field-length normalization factor for this field.

Of course, queries usually consist of more than one term, so we need a way of combining the weights of multiple terms. For this, we turn to the vector space model.

 

 










本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6474084.html ,如需转载请自行联系原作者



相关文章
|
5月前
|
搜索推荐 开发者
如何在 Elasticsearch 中选择精确 kNN 搜索和近似 kNN 搜索
【6月更文挑战第8天】Elasticsearch 是一款强大的搜索引擎,支持精确和近似 kNN 搜索。精确 kNN 搜索保证高准确性但计算成本高,适用于对精度要求极高的场景。近似 kNN 搜索则通过牺牲部分精度来提升搜索效率,适合大数据量和实时性要求高的情况。开发者应根据业务需求和数据特性权衡选择。随着技术发展,kNN 搜索将在更多领域发挥关键作用。
171 4
|
自然语言处理 数据处理 Python
|
人工智能 Java
Elasticsearch:使用 function_score 中的weight和gauss衰减函数定制搜索结果的分数
Elasticsearch:使用 function_score 中的weight和gauss衰减函数定制搜索结果的分数
|
SQL Java
白话Elasticsearch04- 结构化搜索之使用terms query搜索多个值以及多值搜索结果优化
白话Elasticsearch04- 结构化搜索之使用terms query搜索多个值以及多值搜索结果优化
525 0
|
SQL 索引
白话Elasticsearch03- 结构化搜索之基于bool组合多个filter条件来搜索数据
白话Elasticsearch03- 结构化搜索之基于bool组合多个filter条件来搜索数据
299 0
下一篇
无影云桌面