Linux系统调用、新增系统调用方法【转】

简介: 转自:http://blog.chinaunix.net/uid-25374603-id-3401045.html 说明:   系统调用是内核和应用程序间的接口,应用程序要访问硬件设备和其他操作系统资源,可以通过系统调用来完成。

转自:http://blog.chinaunix.net/uid-25374603-id-3401045.html

说明:

  系统调用是内核和应用程序间的接口,应用程序要访问硬件设备和其他操作系统资源,可以通过系统调用来完成。

  在linux中,系统调用是用户空间访问内核的一种手段,除异常和中断外,他们是进入内核的合法入口。系统调用的数量很少,在i386上只有大概300个左右。

  应用程序员通过C库中的应用程序接口(API)而不是直接通过系统调用来编程。

  C库中的函数可以不调用系统调用,也可以只是简单封装一个系统调用,还可以通过调用多个系统调用来实现一个功能。

  linux>本身提供的一组宏来对系统调用直接进行访问。man 2 syscall。

  从程序员的角度来看,系统调用无关紧要,他们只需要跟API打交道就可以了;

  从内核的角度来看,内核只跟系统调用打交道,库函数及应用程序怎么使用系统调用不是内核所关心的。

  linux内核中所有的系统调用函数都用sys_开头。

  函数定义中的asmlinkage宏,用于通知编译器,使用局部堆栈来传递参数;

  函数定义中的FASTCALL宏,用于通知编译器,使用寄存器来传递参数。

  如果上面两个宏都没有,则使用默认传参规则,前4个参数通过R0~R3寄存器传递,其余更多的参数通过栈传递。

  调用链:APP --> LIB --> kernel (syscall)  --> module --> hardware

 

  因为系统调用要从用户空间进入内核空间,所以不可能通过简单的函数调用完成,必须通过一些处理器支持的特殊机制(所谓的软中断)。

  在x86上,这一特殊机制就是汇编指令int $0x80, 而在arm上,就是汇编指令SWI。

  这条指令被封装到C库中的函数里,当程序执行到这一条指令后,cpu会进入一个特殊的异常模式(或软中断模式),并将程序指针跳转到特点的位置(如arm为中断向量表的0x8处)。

  内核中实现了很多的系统调用,这些系统调用的地址被按顺序放在一个系统调用表中,这个表是一个名为sys_call_table的数组,共有NR_syscalls个表项。

  通过这个表,就可以调用到内核定义的所有sys_函数。

  调用汇编指令int $0x80 或SWI 时,要同时传递一个系统调用号,这个系统调用号将作为索引,从sys_call_table中选择对应的系统调用。

  int80将系统调用号保存在eax寄存器中,而SWI将其直接集成在指令中(如SWI 0x124)。

  过程:swi 系统调用号 --> 系统调用表 --> 系统调用

 

  内核中处理系统调用的函数定义在arch/x86/kernel/entry.s中的system_call,而arm系统在arch/arm/kernel/entry-common.s中的vector_swi。

  x86系统的系统调用表定义在arch/x86/kernel/syscall_table.s(或直接定义在entry.s)中,而arm定义在arch/arm/kernel/calls.s中。

  x86系统调用号定义在arch/x86/include/asm/unistd.h中,arm系统调用号定义在arch/arm/include/asm/unistd.h中。

 

  系统调用必须仔细检查传入参数的有效性,尤其是用户提供的指针,必须确保:
    *指针指向的内存区域属于用户空间,进程不能哄骗内核去读内核空间的数据。
    *指针指向的内存区域属于进程的地址空间,不能哄骗内核去读其他进程的数据。
    *进程不能绕过内存访问权限。

  内核在执行系统调用的时候处于进程上下文,可以休眠,也可以被抢占,所以必须保证系统调用是可重入的。

 

跟踪linux内核中arm架构的sys_getpid()系统调用

系统调用号在文件arch/arm/include/asm/unistd.h中,如下:

  说明:可见sys_getpid()的系统调用号是20,此调用号其实就是系统调用表(数组)的下标。所以系统调用表中sys_getpid()肯定在第20项。

      特别注意:系统调用号17之类,此系统调用已经弃用,但为了兼容性及不至于日后混乱,所以调用号不能重用,只能空着(跳过).

系统调用表在文件arch/arm/kernel/calls.s,如下:

  说明:可见sys_getpid()在系统调用表中第20项,和其系统调用号一致。

     特别注意:系统调用号17对应的表项,对于已经弃用的系统调用,linux系统统一赋予sys_ni_syscall()系统调用。

系统调用的声明在文件 include/linux/syscalls.h,如下:

系统调用的实现在文件kernel/timer.c,如下:

  说明:源代码中不能直接找到sys_getpid()的实现代码,因为64为系统的BUG,所以源代码中的系统调用sys_ABC,都用SYSCALL_DEFINEx(ABC)封装了一层,以解决BUG。

SYSCALL_DEFINE在文件include/linux/syscalls.h,如下:

 

手工添加一个自己实现的系统调用:

首先,模仿原来代码,在文件arch/arm/include/asm/unistd.h添加一个系统调用号,如下:

特别说明:自己新加的系统调用号只能在原来最大值得基础上加1,所以我的系统调用号是361,对应系统调用是sys_mysyscall()

然后,模仿原来代码,在文件arch/arm/kernel/calls.S添加一个系统调用表项,如下:

最后:编写系统调用的实现代码,此代码必须能保证编译进内核,如下:

因为我们知道文件init/main.c一定编译进内核,所以我们的实现代码在此文件中添加。

特别注意:系统调用必须返回long型值。

要使用此系统调用,必须重新编译内核,并且开发板必须使用新内核,如下:

1 在主机端,linux源码跟目录,输入如下: 2 # make 3 # cp -f arch/arm/boot/zImage /tftpboot/ 4 在开发板端,输入如下: 5 $ reboot

 

程序:测试系统调用的实现效果

创建目录/nfsroot/kern/2012-04-16/02/。

创建文件/nfsroot/kern/2012-04-16/02/test.c,内容如下:

创建文件/nfsroot/kern/2012-04-16/02/Makefile,内容如下:

在主机端编译程序,过程如下:

在开发板端运行测试程序,过程如下:

  说明:可见getpid的两种结果一直,我们自己的系统调用361也正确运行。

 

特别说明:

系统调用号是linux内核维护人员确定的,自己添加的系统调用,其他人开发的应用程序不会使用到,因为只有自己知道有这个系统调用。

这种系统调用需要直接修改内核源代码,而且必须编译进内核才能使用,而且系统调用号是自己设定的,所以一般不会这样手动添加系统调用。

若自己sys_open,sys_read等系统调用,可以通过模块来实现,从而实现系统调用的复用。

【作者】 张昺华
【新浪微博】 张昺华--sky
【twitter】 @sky2030_
【facebook】 张昺华 zhangbinghua
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
目录
相关文章
|
1月前
|
Linux
Linux系统之whereis命令的基本使用
Linux系统之whereis命令的基本使用
77 24
Linux系统之whereis命令的基本使用
|
4天前
|
存储 缓存 Linux
Linux系统中如何查看CPU信息
本文介绍了查看CPU核心信息的方法,包括使用`lscpu`命令和读取`/proc/cpuinfo`文件。`lscpu`能快速提供逻辑CPU数量、物理核心数、插槽数等基本信息;而`/proc/cpuinfo`则包含更详细的配置数据,如核心ID和处理器编号。此外,还介绍了如何通过`lscpu`和`dmidecode`命令获取CPU型号、制造商及序列号,并解释了CPU频率与缓存大小的相关信息。最后,详细解析了`lscpu`命令输出的各项参数含义,帮助用户更好地理解CPU的具体配置。
34 8
|
1月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
78 34
|
4天前
|
存储 运维 监控
深度体验阿里云系统控制台:SysOM 让 Linux 服务器监控变得如此简单
作为一名经历过无数个凌晨三点被服务器报警电话惊醒的运维工程师,我对监控工具有着近乎苛刻的要求。记得去年那次大型活动,我们的主站流量暴增,服务器内存莫名其妙地飙升到90%以上,却找不到原因。如果当时有一款像阿里云 SysOM 这样直观的监控工具,也许我就不用熬通宵排查问题了。今天,我想分享一下我使用 SysOM 的亲身体验,特别是它那令人印象深刻的内存诊断功能。
|
3月前
|
存储 缓存 监控
Linux缓存管理:如何安全地清理系统缓存
在Linux系统中,内存管理至关重要。本文详细介绍了如何安全地清理系统缓存,特别是通过使用`/proc/sys/vm/drop_caches`接口。内容包括清理缓存的原因、步骤、注意事项和最佳实践,帮助你在必要时优化系统性能。
313 78
|
2月前
|
缓存 安全 Linux
Linux系统查看操作系统版本信息、CPU信息、模块信息
在Linux系统中,常用命令可帮助用户查看操作系统版本、CPU信息和模块信息
167 23
|
3月前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
103 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
3月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
138 13
|
4月前
|
Ubuntu Linux 网络安全
linux系统ubuntu中在命令行中打开图形界面的文件夹
在Ubuntu系统中,通过命令行打开图形界面的文件夹是一个高效且实用的操作。无论是使用Nautilus、Dolphin还是Thunar,都可以根据具体桌面环境选择合适的文件管理器。通过上述命令和方法,可以简化日常工作,提高效率。同时,解决权限问题和图形界面问题也能确保操作的顺利进行。掌握这些技巧,可以使Linux操作更加便捷和灵活。
130 3
|
3月前
|
Ubuntu Linux C++
Win10系统上直接使用linux子系统教程(仅需五步!超简单,快速上手)
本文介绍了如何在Windows 10上安装并使用Linux子系统。首先,通过应用商店安装Windows Terminal和Linux系统(如Ubuntu)。接着,在控制面板中启用“适用于Linux的Windows子系统”并重启电脑。最后,在Windows Terminal中选择安装的Linux系统即可开始使用。文中还提供了注意事项和进一步配置的链接。
107 0