概率论快速学习04:概率公理 全概率 贝叶斯 事件独立性

简介:

The total probability


In the Set :
    image imageimage

                                                             image

The law of total probability is the proposition that if \left\{{B_n : n = 1, 2, 3, \ldots}\right\} is a finite or countably infinitepartition of a sample space (in other words, a set of pairwise disjoint events whose union is the entire sample space) and each event B_n is measurable, then for any event A of the same probability space:

             \Pr(A)=\sum_n \Pr(A\mid B_n)\Pr(B_n),\,

example:

例. 甲、乙两家工厂生产某型号车床,其中次品率分别为20%, 5%。已知每月甲厂生产的数量是乙厂的两倍,现从一个月的产品中任意抽检一件,求该件产品为合格的概率?

A表示产品合格,B表示产品来自甲厂

image

 

Bayes


for some partition {Bj} of the event space, the event space is given or conceptualized in terms of P(Bj) and P(A|Bj). It is then useful to compute P(A) using the law of total probability:        

                               image

 

example:

An entomologist spots what might be a rare subspecies of beetle, due to the pattern on its back. In the rare subspecies, 98% have the pattern, or P(Pattern|Rare) = 98%. In the common subspecies, 5% have the pattern. The rare subspecies accounts for only 0.1% of the population. How likely is the beetle having the pattern to be rare, or what is P(Rare|Pattern)?

From the extended form of Bayes' theorem (since any beetle can be only rare or common),

\begin{align}P(\text{Rare}|\text{Pattern}) &=
\frac{P(\text{Pattern}|\text{Rare})P(\text{Rare})} {P(\text{Pattern}|\text{Rare})P(\text{Rare}) \, + \, P(\text{Pattern}|\text{Common})P(\text{Common})} \\[8pt]
&= \frac{0.98 \times 0.001} {0.98 \times 0.001 + 0.05 \times 0.999} \\[8pt]
&\approx 1.9\%. \end{align}

 

One more example:

image

 

Independence


Two events

Two events A and B are independent if and only if their joint probability equals the product of their probabilities:

\mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B).

Why this defines independence is made clear by rewriting with conditional probabilities:

\begin{align}
\mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B) &\Leftrightarrow \mathrm{P}(A) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \\
&\Leftrightarrow \mathrm{P}(A) = \mathrm{P}(A\mid B)
\end{align}

how about Three events

           image

 

sometimes , we will see the Opposition that can be used to make the mess done. We will use the rule of independence such as : P(A^c)=1-P(A)\,

相关文章
|
5天前
|
云安全 人工智能 安全
AI被攻击怎么办?
阿里云提供 AI 全栈安全能力,其中对网络攻击的主动识别、智能阻断与快速响应构成其核心防线,依托原生安全防护为客户筑牢免疫屏障。
|
15天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
9天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
614 216
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
857 61
|
7天前
|
人工智能 移动开发 自然语言处理
2025最新HTML静态网页制作工具推荐:10款免费在线生成器小白也能5分钟上手
晓猛团队精选2025年10款真正免费、无需编程的在线HTML建站工具,涵盖AI生成、拖拽编辑、设计稿转代码等多种类型,均支持浏览器直接使用、快速出图与文件导出,特别适合零基础用户快速搭建个人网站、落地页或企业官网。
1287 157
|
5天前
|
编解码 Linux 数据安全/隐私保护
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
241 138
|
7天前
|
存储 安全 固态存储
四款WIN PE工具,都可以实现U盘安装教程
Windows PE是基于NT内核的轻量系统,用于系统安装、分区管理及故障修复。本文推荐多款PE制作工具,支持U盘启动,兼容UEFI/Legacy模式,具备备份还原、驱动识别等功能,操作简便,适合新旧电脑维护使用。
531 109