[LintCode] Longest Increasing Subsequence 最长递增子序列

简介:

Given a sequence of integers, find the longest increasing subsequence (LIS).

You code should return the length of the LIS.

Have you met this question in a real interview?

Example

For [5, 4, 1, 2, 3], the LIS  is [1, 2, 3], return 3

For [4, 2, 4, 5, 3, 7], the LIS is [4, 4, 5, 7], return 4

Challenge

Time complexity O(n^2) or O(nlogn)

Clarification

What's the definition of longest increasing subsequence?

    * The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.  

    * https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

我们先来看一种类似Brute Force的方法,这种方法会找出所有的递增的子序列,并把它们都保存起来,最后再找出里面最长的那个,时间复杂度为O(n2),参见代码如下:

class Solution {
public:
    /**
     * @param nums: The integer array
     * @return: The length of LIS (longest increasing subsequence)
     */
    int longestIncreasingSubsequence(vector<int> nums) {
        vector<vector<int> > solutions;
        longestIncreasingSubsequence(nums, solutions, 0);
        int res = 0;
        for (auto &a : solutions) {
            res = max(res, (int)a.size());
        }
        return res;
    }
    void longestIncreasingSubsequence(vector<int> &nums, vector<vector<int> > &solutions, int curIdx) {
        if (curIdx >= nums.size() || curIdx < 0) return;
        int cur = nums[curIdx];
        vector<int> best_solution;
        for (int i = 0; i < curIdx; ++i) {
            if (nums[i] <= cur) {
                best_solution = seqWithMaxLength(best_solution, solutions[i]);
            }
        }
        vector<int> new_solution = best_solution;
        new_solution.push_back(cur);
        solutions.push_back(new_solution);
        longestIncreasingSubsequence(nums, solutions, curIdx + 1);
    }
    vector<int> seqWithMaxLength(vector<int> &seq1, vector<int> &seq2) {
        if (seq1.empty()) return seq2;
        if (seq2.empty()) return seq1;
        return seq1.size() < seq2.size() ? seq2 : seq1;
    }  
};

本文转自博客园Grandyang的博客,原文链接:最长递增子序列[LintCode] Longest Increasing Subsequence ,如需转载请自行联系原博主。

相关文章
Leetcode 516. Longest Palindromic Subsequence
找到一个字符串的最长回文子序列,这里注意回文子串和回文序列的区别。子序列不要求连续,子串(substring)是要求连续的。leetcode 5. Longest Palindromic Substring就是求连续子串的。
58 0
|
算法
LeetCode 300. Longest Increasing Subsequence
给定一个无序的整数数组,找到其中最长上升子序列的长度。
58 0
LeetCode 300. Longest Increasing Subsequence
|
人工智能
POJ 2533 Longest Ordered Subsequence
POJ 2533 Longest Ordered Subsequence
117 0
|
算法
动态规划法(八)最大子数组问题(maximum subarray problem)
问题简介   本文将介绍计算机算法中的经典问题——最大子数组问题(maximum subarray problem)。所谓的最大子数组问题,指的是:给定一个数组A,寻找A的和最大的非空连续子数组。
1780 0

热门文章

最新文章