[CareerCup] 18.11 Maximum Subsquare 最大子方形

简介:

18.11 Imagine you have a square matrix, where each cell (pixel) is either black or white. Design an algorithm to find the maximum subsquare such that all four borders are filled with black pixels.

LeetCode上的原题,请参见我之前的解法Maximal Square。书上给了两种解法,但是比较长:

解法一:

class Subsquare {
public:
    int row, col, size;
    Subsquare(int r, int c, int sz): row(r), col(c), size(sz) {}
    void print() {
        cout << "(" << row << ", " << col << ", " << size << ")" << endl;
    }
};

bool is_square(vector<vector<int>> &matrix, int row, int col, int size) {
    for (int j = 0; j < size; ++j) {
        if (matrix[row][col + j] == 1) return false;
        if (matrix[row + size - 1][col + j] == 1) return false;
    }
    for (int i = 1; i < size - 1; ++i) {
        if (matrix[row + i][col] == 1) return false;
        if (matrix[row + i][col + size - 1] == 1) return false;
    }
    return true;
}

Subsquare* find_square_with_size(vector<vector<int>> &matrix, int squareSize) {
    int cnt = matrix.size() - squareSize + 1;
    for (int row = 0; row < cnt; ++row) {
        for (int col = 0; col < cnt; ++col) {
            if (is_square(matrix, row, col, squareSize)) {
                return new Subsquare(row, col, squareSize);
            }
        }
    }
    return NULL;
}

Subsquare* find_square(vector<vector<int>> &matrix) {
    for (int i = matrix.size(); i >= 1; --i) {
        Subsquare *square = find_square_with_size(matrix, i);
        if (square) return square;
    }
    return NULL;
}

解法二:

class Subsquare {
public:
    int row, col, size;
    Subsquare(int r, int c, int sz): row(r), col(c), size(sz) {}
    void print() {
        cout << "(" << row << ", " << col << ", " << size << ")" << endl;
    }
};

class SquareCell {
public:
    int zerosRight = 0, zerosBelow = 0;
    SquareCell(int right, int below): zerosRight(right), zerosBelow(below){}
    void setZerosRight(int right) {
        zerosRight = right;
    }
    void setZerosBelow(int below) {
        zerosBelow = below;
    }
};

bool is_square(vector<vector<SquareCell*>> &matrix, int row, int col, int size) {
    SquareCell *topLeft = matrix[row][col];
    SquareCell *topRight = matrix[row][col + size - 1];
    SquareCell *bottomRight = matrix[row + size - 1][col];
    if (topLeft->zerosRight < size) return false;
    if (topLeft->zerosBelow < size) return false;
    if (topRight->zerosBelow < size) return false;
    if (bottomRight->zerosRight < size) return false;
    return true;
}

vector<vector<SquareCell*>> process_square(vector<vector<int>> &matrix) {
    vector<vector<SquareCell*>> res(matrix.size(), vector<SquareCell*>(matrix.size()));
    for (int r = matrix.size() - 1; r >= 0; --r) {
        for (int c = matrix.size() - 1; c >= 0; --c) {
            int rightZeros = 0, belowZeros = 0;
            if (matrix[r][c] == 0) {
                ++rightZeros;
                ++belowZeros;
                if (c + 1 < matrix.size()) {
                    SquareCell *pre = res[r][c + 1];
                    rightZeros += pre->zerosRight;
                }
                if (r + 1 < matrix.size()) {
                    SquareCell *pre = res[r + 1][c];
                    belowZeros += pre->zerosBelow;
                }
            }
            res[r][c] = new SquareCell(rightZeros, belowZeros);
        }
    }
    return res;
}

Subsquare* find_square_with_size(vector<vector<SquareCell*>> &processed, int square_size) {
    int cnt = processed.size() - square_size + 1;
    for (int row = 0; row < cnt; ++row) {
        for (int col = 0; col < cnt; ++col) {
            if (is_square(processed, row, col, square_size)) {
                return new Subsquare(row, col, square_size);
            }
        }
    }
    return NULL;
}

Subsquare* find_square(vector<vector<int>> &matrix) {
    vector<vector<SquareCell*>> processed = process_square(matrix);
    // cout << "here" << endl;
    for (int i = matrix.size(); i >= 1; --i) {
        Subsquare *square = find_square_with_size(processed, i);
        if (square) return square;
    }
    return NULL;
}

本文转自博客园Grandyang的博客,原文链接: 最大子方形[CareerCup] 18.11 Maximum Subsquare,如需转载请自行联系原博主。

相关文章
|
11天前
|
数据采集 人工智能 安全
|
6天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
330 164
|
5天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
332 155
|
6天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
409 4
|
14天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
940 7