Codeforces 842B Gleb And Pizza【几何,水】

简介: B. Gleb And Pizza time limit per test:2 seconds memory limit per test:256 megabytes input:standard input output:standard output Gleb ordered pizza home.

B. Gleb And Pizza

time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Gleb ordered pizza home. When the courier delivered the pizza, he was very upset, because several pieces of sausage lay on the crust, and he does not really like the crust.

The pizza is a circle of radius r and center at the origin. Pizza consists of the main part — circle of radius r - d with center at the origin, and crust around the main part of the width d. Pieces of sausage are also circles. The radius of the i -th piece of the sausage is ri, and the center is given as a pair (xi, yi).

Gleb asks you to help determine the number of pieces of sausage caught on the crust. A piece of sausage got on the crust, if it completely lies on the crust.

Input

First string contains two integer numbers r and d (0 ≤ d < r ≤ 500) — the radius of pizza and the width of crust.

Next line contains one integer number n — the number of pieces of sausage (1 ≤ n ≤ 105).

Each of next n lines contains three integer numbers xi, yi and ri ( - 500 ≤ xi, yi ≤ 500, 0 ≤ ri ≤ 500), where xi and yi are coordinates of the center of i-th peace of sausage, ri — radius of i-th peace of sausage.

Output

Output the number of pieces of sausage that lay on the crust.

Examples
Input
8 4
7
7 8 1
-7 3 2
0 2 1
0 -2 2
-3 -3 1
0 6 2
5 3 1
Output
2
Input
10 8
4
0 0 9
0 0 10
1 0 1
1 0 2
Output
0
Note

Below is a picture explaining the first example. Circles of green color denote pieces of sausage lying on the crust.

 


题目链接:http://codeforces.com/contest/842/problem/B

分析:根据圆心到原点的距离这个东西判断一下圆在不在那个环里面就好

下面给出(Python 3.5.2)AC代码:

 

1 r,d=map(int,input().split())
2 n=int(input())
3 k=0
4 for i in range(n):
5     x,y,w=map(int,input().split())
6     l=(x**2+y**2)**(1/2)
7     if l-w>=r-d and l+w<=r:
8         k+=1
9 print(k)

 

目录
相关文章
|
Serverless C语言 C++
【数学建模】利用C语言来实现 太阳赤纬 太阳高度角 太阳方位角 计算和求解分析 树木树冠阴影面积与种植间距的编程计算分析研究
【数学建模】利用C语言来实现 太阳赤纬 太阳高度角 太阳方位角 计算和求解分析 树木树冠阴影面积与种植间距的编程计算分析研究
289 1
|
7月前
QuantLib学习笔记——看看几何布朗运动有没有股票走势的感觉
QuantLib学习笔记——看看几何布朗运动有没有股票走势的感觉
55 0
【数学题】求一求面积
 提示:可以建立坐标系
923 0
|
开发工具
魔幻的曲率--已知曲率画图形
已知曲率为 $1/5+2\sin(s)-9/2\sin(s/2)$, 则图形为 转载自 ni_o.   感谢 herbertfederer 指出错误, 并给出了一些 Mathematica 代码 (只是 copy 过来, 我也不会用, 也不想看了, 转载至此):     1 c...
794 0
|
算法框架/工具 Perl
[家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子
  Navier-Stokes equations   1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathcal{B}$.
1013 0
|
资源调度 关系型数据库 RDS
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.2 向量场过任一随流体运动的曲面的通量对时间的微式及其应用
1.  $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
750 0
|
资源调度 BI
[物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量       5. 3. 1 质量守恒定律    $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$   5.
612 0