转载RabbitMQ入门(6)--远程调用

简介: 远程过程调用(RPC) (使用Java客户端) 在指南的第二部分,我们学习了如何使用工作队列将耗时的任务分布到多个工作者中。 但是假如我们需要调用远端计算机的函数,等待结果呢?好吧,这又是另一个故事了。

远程过程调用(RPC)

(使用Java客户端)

在指南的第二部分,我们学习了如何使用工作队列将耗时的任务分布到多个工作者中。

但是假如我们需要调用远端计算机的函数,等待结果呢?好吧,这又是另一个故事了。这模式通常被称为远程过程调用或RPC。

在这部分,我们将会使用RabbitMQ构建一个RPC系统:一个客户端和一个可扩展的RPC服务器。由于我们还没有值得分散的耗时任务,我们将会创建一个虚拟的RPC服务,用来返回Fibonacci(斐波纳契数列)。

用户接口

为了说明RPC服务如何使用,我们将会创建一个简单德客户端类。它会暴露一个叫call的方法,用来发送一个RPC请求,在响应回复之前都会一直阻塞:

FibonacciRpcClient fibonacciRpc = new FibonacciRpcClient();   
String result = fibonacciRpc.call("4"); System.out.println( "fib(4) is " + result); 

RPC方面的注意
虽然RPC在电脑运算方面是一个十分普通的模式,但是它依旧常常受批判的。
如果一个程序员没有意识到函数call是本地的还是一个迟钝的RPC。这结果是不可预知的很让你困惑的,并且会增加不必要的复杂调试。与简化软件相反,误用RPC会导致不可维护的意大利面条代码(译者注:原文是spaghetti code可能形容代码很长很乱)。

思想中煎熬,考虑下接下来的建议:
确保明显区分哪个是函数call是本地调用的,哪个是远端调用的。

给你的系统加上文档,让组件之间的依赖项清晰可见的。

处理错误事件。当RPC服务器很久没有响应了,客户端应该如何响应?
当关于RPC的所有疑问消除,在你可以的情况下,你应该使用一个异步的管道,代替RPC中阻塞,结果会异步的放入接下来的计算平台。

回收队列

一般来说在RabbitMQ上做RPC是容易的。一个客户端发送一个请求消息,一个服务器返回响应消息。为了接受到响应,我们需要再请求中带上一个callback队列的地址。我们可以使用默认队列(那个在Java客户端上市独占的)。让我们试一下:

callbackQueueName = channel.queueDeclare().getQueue();

BasicProperties props = new BasicProperties
                            .Builder()
                            .replyTo(callbackQueueName)
                            .build();

channel.basicPublish("", "rpc_queue", props, message.getBytes());

// ... then code to read a response message from the callback_queue ...

消息属性
这AMQP协议预先确定了消息中的14个属性。他们大多数属性很少使用,除了下面这些例外:
deliveryMode:将一个消息标记为持久化(值为2)或者瞬态的(其他值)。你可能从第二部分中记起这个属性。
contentType:用来描述媒体类型的编码。例如常常使用的JSON编码,这是一个好的惯例,设置这个属性为:application/json
replyTo:通常来命名回收队列的名字。
correlationId:对RPC加速响应请求是很有用的。

我们需要这个新的引用:

import com.rabbitmq.client.AMQP.BasicProperties;

相关性ID (原:Correlation Id)

在当前方法中我们建议为每一个RPC请求创建一个回收队列。这个效率十分低下的,但幸运的是有一个更好的方式- 让我们为每一个客户端创建一个单一的回收队列。
这样又出现了新的问题,没有清晰的判断队列中的响应是属于哪个请求的。这个时候coorrelationId属性发挥了作用。我们将每个请求的这个属性设置为唯一值。以后当我们在回收队列中接收消息时,我们将会查看这个属性,依据这个属性值,我们是能将每个响应匹配的对应的请求上。如果我们遇见个未知的correlationId值,我们可以安全的丢弃这个消息-因为它不属于任何一个我们的请求。

你可能会问,为什么我们要忽略哪些在回收队列中未知的消息,而不是以一个错误结束?因为在服务器竟态条件下,这种情况是可能的。RPC服务器发送给 我们答应之后,在发送一个确认消息之前,就死掉了,虽然这种可能性不大,但是它依旧存在可能。如果这事情发生了,RPC服务器重启之后,将会再一次处理请 求。这就是为什么我们要温和地处理重复的响应,这RPC理想情况下是幂等的。

摘要

python-six.png
我们的RPC将会像这样工作:

当客户端启动,它会创建一个匿名的独占的回收队列。
对于一个RPC请求,客户端会发送一个消息中有两个属性:replyTo,要发送的的回收队列和correlationId,对于每一个请求都是唯一值。
这请求发送到rpc_queue队列中。
这RPC工作者(亦称:服务器)等候队列中的请求。当请求出现,它处理这工作并发送携带结果的信息到客户端,使用的队列是消息属性replTo中的那个。
客户端等待回收队列中的数据。当一个消息出现,它会检查correlationId属性。如果它符合请求中的值,它会返回这响应给应用程序。

把所有的放在一起

斐波那契任务:

private static int fib(int n) throws Exception { if (n == 0) return 0; if (n == 1) return 1; return fib(n-1) + fib(n-2); } 

我们声明我们的斐波那契函数。它假定一个合法的正整数做为输入参数。(不要期望这个可以处理大量数字,它可能是最慢的递归实现了)。
我们的RPC服务器RPCServer.java的代码:

private static final String RPC_QUEUE_NAME = "rpc_queue";

ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); Connection connection = factory.newConnection(); Channel channel = connection.createChannel(); channel.queueDeclare(RPC_QUEUE_NAME, false, false, false, null); channel.basicQos(1); QueueingConsumer consumer = new QueueingConsumer(channel); channel.basicConsume(RPC_QUEUE_NAME, false, consumer); System.out.println(" [x] Awaiting RPC requests"); while (true) { QueueingConsumer.Delivery delivery = consumer.nextDelivery(); BasicProperties props = delivery.getProperties(); BasicProperties replyProps = new BasicProperties .Builder() .correlationId(props.getCorrelationId()) .build(); String message = new String(delivery.getBody()); int n = Integer.parseInt(message); System.out.println(" [.] fib(" + message + ")"); String response = "" + fib(n); channel.basicPublish( "", props.getReplyTo(), replyProps, response.getBytes()); channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false); } 

这服务器代码是相当简单明了的:
如往常一样,我们开始建立连接,通道和声明队列。
我们可能想运行不止一个服务器进程。为了均衡的负载到多个服务器上,我们需要设置channel.basicQos中的prefetchCount属性。
我们使用basicConsume访问队列。然后进入while循环,我们等待请求消息,处理工作,发送响应。

我们RPC客户端RPCClient.java的代码:

private Connection connection;
private Channel channel;
private String requestQueueName = "rpc_queue"; private String replyQueueName; private QueueingConsumer consumer; public RPCClient() throws Exception { ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); connection = factory.newConnection(); channel = connection.createChannel(); replyQueueName = channel.queueDeclare().getQueue(); consumer = new QueueingConsumer(channel); channel.basicConsume(replyQueueName, true, consumer); } public String call(String message) throws Exception { String response = null; String corrId = java.util.UUID.randomUUID().toString(); BasicProperties props = new BasicProperties .Builder() .correlationId(corrId) .replyTo(replyQueueName) .build(); channel.basicPublish("", requestQueueName, props, message.getBytes()); while (true) { QueueingConsumer.Delivery delivery =consumer.nextDelivery(); if (delivery.getProperties().getCorrelationId().equals(corrId)) { response = new String(delivery.getBody()); break; } } return response; } public void close() throws Exception { connection.close(); } 

The client code is slightly more involved:
这客户端代码是更加清晰:
我们建立一个连接和通道并且声明一个独占的callback队列用来等待答复。
我们订阅这个callback队列,以便于我们可以接收到RPC响应。
我们的call方法做这真正的RPC请求。
接着,我们首次生成一个唯一的correlationId数字并且保存它,在循环中使用这个值找到合适的响应。
接下来,我们发布请求消息,带着两个属性:replyTocorrelationId
这时候,我们可以坐下来,等着合适的响应抵达。
这循环中做了个简单德工作,检查每一个响应消息中correlationId值,是否是它要寻找的。如果是,它会保存这响应。
最终,我们把响应返回给用户。

制造客户端请求:

RPCClient fibonacciRpc = new RPCClient();

System.out.println(" [x] Requesting fib(30)");   
String response = fibonacciRpc.call("30"); System.out.println(" [.] Got '" + response + "'"); fibonacciRpc.close(); 

现在是时候让我们回顾下我们RPCClient.javaRPCServer.java中的全部例子的源码(包含基本的异常处理)。
编译和如往常一样建立类路径(看指南的第一部分)

$ javac -cp rabbitmq-client.jar RPCClient.java RPCServer.java

我们的RPC服务现在准备好了,我们启动着服务器:

$ java -cp $CP RPCServer
 [x] Awaiting RPC requests

为了请求一个斐波那契数字,运行客户端:

$ java -cp $CP RPCClient
 [x] Requesting fib(30) 

现在的设计不仅仅可以实现一个RPC服务,并且它还有几项重要的优势:
如果RPC服务器反应太迟缓,你可以通过运行另一个程序来扩展。试着通过一个新的控制平台来运行第二个RPC服务器。在客户端这边,RPC要求仅发送和接收一个消息。像queueDeclare非同步调用是被要求的。因此,RPC客户端仅仅需要一个网络循环的单一RPC请求。

我们的代码一直是十分简单的,不能试着解决更复杂(但是重要)的问题,比如:
如果没有服务器运行,客户端如何响应?
客户端是否对RPC的超时有处理?
如果服务器发生故障,抛出一个异常,是否应该传递到客户端?
在处理之前把进入来的非法消息隔离掉(检查界限,类型)。

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
2月前
|
消息中间件 Java Kafka
RabbitMQ 入门
RabbitMQ 入门
|
5月前
|
消息中间件 新零售 弹性计算
云消息队列 RabbitMQ 版入门训练营,解锁对比开源优势与零基础实战
欢迎加入「云消息队列 RabbitMQ 版入门训练营」。
171 16
|
4月前
|
消息中间件 存储 Java
分享一下rocketmq入门小知识
分享一下rocketmq入门小知识
57 0
分享一下rocketmq入门小知识
|
4月前
|
网络协议 物联网 测试技术
App Inventor 2 MQTT拓展入门(保姆级教程)
本文演示的是App和一个测试客户端进行消息交互的案例,实际应用中,我们的测试客户端可以看着是任意的、支持MQTT协议的硬件,通过订阅及发布消息,联网硬件与我们的App进行双向数据通信,以实现万物互联的智能控制效果。
219 2
EMQ
|
7月前
|
安全 网络性能优化
MQTT 5.0 报文(Packets)入门指南
MQTT 控制报文是 MQTT 数据传输的最小单元。MQTT 客户端和服务端通过交换控制报文来完成它们的工作,比如订阅主题和发布消息。
EMQ
726 14
MQTT 5.0 报文(Packets)入门指南
|
6月前
|
消息中间件 存储 Kafka
01.RabbitMQ入门
01.RabbitMQ入门
59 0
|
7月前
|
消息中间件 监控 Linux
RabbitMQ轻松入门:从零开始的部署与安装指南
RabbitMQ轻松入门:从零开始的部署与安装指南
143 0
RabbitMQ轻松入门:从零开始的部署与安装指南
|
6月前
|
消息中间件 存储 前端开发
RabbitMQ在Java中的完美实现:从入门到精通
本文由木头左介绍如何在Java项目中使用RabbitMQ。RabbitMQ是开源的AMQP实现,支持多种客户端,适合分布式系统中的消息传递。首先需安装Erlang和RabbitMQ,接着在Java项目中添加RabbitMQ客户端库依赖。通过创建连接工厂和连接,建立与RabbitMQ的通信,并展示了创建连接和通道的代码示例。
|
7月前
|
消息中间件 Docker 微服务
RabbitMQ入门指南(十一):延迟消息-延迟消息插件
RabbitMQ是一个高效、可靠的开源消息队列系统,广泛用于软件开发、数据传输、微服务等领域。本文主要介绍了DelayExchange插件、延迟消息插件实现延迟消息等内容。
1029 0
|
7月前
|
消息中间件 微服务
RabbitMQ入门指南(十):延迟消息-死信交换机
RabbitMQ是一个高效、可靠的开源消息队列系统,广泛用于软件开发、数据传输、微服务等领域。本文主要介绍了死信交换机、死信交换机实现延迟消息等内容。
189 0